forked from kubapok/retroc2
final
This commit is contained in:
parent
75174effea
commit
f6163eb890
@ -44,7 +44,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n",
|
"train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n",
|
||||||
"print(len(train))\n",
|
"print(len(train))\n",
|
||||||
"train = train[:10000]"
|
"train = train[:30000]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -58,20 +58,6 @@
|
|||||||
"y_train = train[0]"
|
"y_train = train[0]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "dd454ce5-a06e-4fbd-a546-83fb94ad0390",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t')\n",
|
|
||||||
"x_dev = x_dev_data[0]\n",
|
|
||||||
"x_dev[19999] = \"to jest tekst testowy\"\n",
|
|
||||||
"x_dev[20000] = \"a ten tekst jest najbardziej testowy\"\n",
|
|
||||||
"y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
@ -95,23 +81,6 @@
|
|||||||
"model.fit(x_train, y_train)"
|
"model.fit(x_train, y_train)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "cc1270d5-29dc-4f03-82c1-dc03f3e4fa00",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"dev_predicted = model.predict(x_dev)\n",
|
|
||||||
"\n",
|
|
||||||
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
|
||||||
" for i in dev_predicted:\n",
|
|
||||||
" f.write(str(i)+'\\n')\n",
|
|
||||||
"\n",
|
|
||||||
"dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n",
|
|
||||||
"dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 5,
|
||||||
@ -135,8 +104,8 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"x_dev = readFile('dev-0/in.tsv')\n",
|
"x_dev0 = readFile('dev-0/in.tsv')\n",
|
||||||
"dev_predicted = model.predict(x_dev)\n",
|
"dev_predicted = model.predict(x_dev0)\n",
|
||||||
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
||||||
" for i in dev_predicted:\n",
|
" for i in dev_predicted:\n",
|
||||||
" f.write(str(i)+'\\n')"
|
" f.write(str(i)+'\\n')"
|
||||||
@ -144,17 +113,21 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 7,
|
||||||
"id": "223de995-5e91-4254-9214-4fc871c985e9",
|
"id": "66e4c057-6a76-4d05-ad60-faa09381fdb1",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(mean_squared_error(dev_out, dev_expected))"
|
"x_dev1 = readFile('dev-0/in.tsv')\n",
|
||||||
|
"dev_predicted = model.predict(x_dev1)\n",
|
||||||
|
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
||||||
|
" for i in dev_predicted:\n",
|
||||||
|
" f.write(str(i)+'\\n')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 8,
|
||||||
"id": "3bc8418b-64f1-4163-a0ec-8e3293032341",
|
"id": "3bc8418b-64f1-4163-a0ec-8e3293032341",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -174,10 +147,19 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 9,
|
||||||
"id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7",
|
"id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[NbConvertApp] Converting notebook run.ipynb to script\n",
|
||||||
|
"[NbConvertApp] Writing 1597 bytes to run.py\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"!jupyter nbconvert --to script run.ipynb"
|
"!jupyter nbconvert --to script run.ipynb"
|
||||||
]
|
]
|
||||||
|
40000
dev-0/out.tsv
40000
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
62
run.ipynb
62
run.ipynb
@ -44,7 +44,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n",
|
"train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n",
|
||||||
"print(len(train))\n",
|
"print(len(train))\n",
|
||||||
"train = train[:10000]"
|
"train = train[:30000]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -58,20 +58,6 @@
|
|||||||
"y_train = train[0]"
|
"y_train = train[0]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "dd454ce5-a06e-4fbd-a546-83fb94ad0390",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t')\n",
|
|
||||||
"x_dev = x_dev_data[0]\n",
|
|
||||||
"x_dev[19999] = \"to jest tekst testowy\"\n",
|
|
||||||
"x_dev[20000] = \"a ten tekst jest najbardziej testowy\"\n",
|
|
||||||
"y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
@ -95,23 +81,6 @@
|
|||||||
"model.fit(x_train, y_train)"
|
"model.fit(x_train, y_train)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "cc1270d5-29dc-4f03-82c1-dc03f3e4fa00",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"dev_predicted = model.predict(x_dev)\n",
|
|
||||||
"\n",
|
|
||||||
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
|
||||||
" for i in dev_predicted:\n",
|
|
||||||
" f.write(str(i)+'\\n')\n",
|
|
||||||
"\n",
|
|
||||||
"dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n",
|
|
||||||
"dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 5,
|
||||||
@ -135,8 +104,8 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"x_dev = readFile('dev-0/in.tsv')\n",
|
"x_dev0 = readFile('dev-0/in.tsv')\n",
|
||||||
"dev_predicted = model.predict(x_dev)\n",
|
"dev_predicted = model.predict(x_dev0)\n",
|
||||||
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
||||||
" for i in dev_predicted:\n",
|
" for i in dev_predicted:\n",
|
||||||
" f.write(str(i)+'\\n')"
|
" f.write(str(i)+'\\n')"
|
||||||
@ -144,17 +113,21 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 7,
|
||||||
"id": "223de995-5e91-4254-9214-4fc871c985e9",
|
"id": "66e4c057-6a76-4d05-ad60-faa09381fdb1",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"print(mean_squared_error(dev_out, dev_expected))"
|
"x_dev1 = readFile('dev-0/in.tsv')\n",
|
||||||
|
"dev_predicted = model.predict(x_dev1)\n",
|
||||||
|
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
||||||
|
" for i in dev_predicted:\n",
|
||||||
|
" f.write(str(i)+'\\n')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 8,
|
||||||
"id": "3bc8418b-64f1-4163-a0ec-8e3293032341",
|
"id": "3bc8418b-64f1-4163-a0ec-8e3293032341",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -174,10 +147,19 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 9,
|
||||||
"id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7",
|
"id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[NbConvertApp] Converting notebook run.ipynb to script\n",
|
||||||
|
"[NbConvertApp] Writing 1597 bytes to run.py\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"!jupyter nbconvert --to script run.ipynb"
|
"!jupyter nbconvert --to script run.ipynb"
|
||||||
]
|
]
|
||||||
|
39
run.py
39
run.py
@ -19,7 +19,7 @@ from sklearn.pipeline import make_pipeline
|
|||||||
|
|
||||||
train = pd.read_csv('train/train.tsv', header=None, sep='\t', error_bad_lines=False)
|
train = pd.read_csv('train/train.tsv', header=None, sep='\t', error_bad_lines=False)
|
||||||
print(len(train))
|
print(len(train))
|
||||||
train = train.head(40000)
|
train = train[:30000]
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
# In[3]:
|
||||||
@ -32,40 +32,43 @@ y_train = train[0]
|
|||||||
# In[4]:
|
# In[4]:
|
||||||
|
|
||||||
|
|
||||||
x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\t')
|
model = make_pipeline(TfidfVectorizer(), LinearRegression())
|
||||||
x_dev = x_dev_data[0]
|
model.fit(x_train, y_train)
|
||||||
x_dev[19999] = "to jest tekst testowy"
|
|
||||||
x_dev[20000] = "a ten tekst jest najbardziej testowy"
|
|
||||||
y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
|
|
||||||
|
|
||||||
|
|
||||||
# In[5]:
|
# In[5]:
|
||||||
|
|
||||||
|
|
||||||
model = make_pipeline(TfidfVectorizer(), LinearRegression())
|
def readFile(filename):
|
||||||
model.fit(x_train, y_train)
|
result = []
|
||||||
|
with open(filename, 'r', encoding="utf-8") as file:
|
||||||
|
for line in file:
|
||||||
|
text = line.split("\t")[0].strip()
|
||||||
|
result.append(text)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
# In[6]:
|
# In[6]:
|
||||||
|
|
||||||
|
|
||||||
dev_predicted = model.predict(x_dev)
|
x_dev0 = readFile('dev-0/in.tsv')
|
||||||
|
dev_predicted = model.predict(x_dev0)
|
||||||
with open('dev-0/out.tsv', 'wt') as f:
|
with open('dev-0/out.tsv', 'wt') as f:
|
||||||
for i in dev_predicted:
|
for i in dev_predicted:
|
||||||
f.write(str(i)+'\n')
|
f.write(str(i)+'\n')
|
||||||
|
|
||||||
dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\t')
|
|
||||||
dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
# In[7]:
|
x_dev1 = readFile('dev-0/in.tsv')
|
||||||
|
dev_predicted = model.predict(x_dev1)
|
||||||
|
with open('dev-0/out.tsv', 'wt') as f:
|
||||||
|
for i in dev_predicted:
|
||||||
|
f.write(str(i)+'\n')
|
||||||
|
|
||||||
|
|
||||||
print(mean_squared_error(dev_out, dev_expected))
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
# In[8]:
|
|
||||||
|
|
||||||
|
|
||||||
with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:
|
with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:
|
||||||
@ -81,7 +84,7 @@ with open('test-A/out.tsv', 'wt') as f:
|
|||||||
f.write(str(i)+'\n')
|
f.write(str(i)+'\n')
|
||||||
|
|
||||||
|
|
||||||
# In[9]:
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
get_ipython().system('jupyter nbconvert --to script run.ipynb')
|
get_ipython().system('jupyter nbconvert --to script run.ipynb')
|
||||||
|
28440
test-A/out.tsv
28440
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user