{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d103a6c5-a9b4-4547-9e10-f384d716972d", "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "import sklearn\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.pipeline import make_pipeline" ] }, { "cell_type": "code", "execution_count": 2, "id": "6a2785e6-36b0-4649-91d1-aea8fd3599c1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "D:\\Programy\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n", "\n", "\n", " exec(code_obj, self.user_global_ns, self.user_ns)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "107463\n" ] } ], "source": [ "train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n", "print(len(train))\n", "train = train[:30000]" ] }, { "cell_type": "code", "execution_count": 3, "id": "8cc00b89-1007-4c4a-8ba7-c62b57459b79", "metadata": {}, "outputs": [], "source": [ "x_train = train[4]\n", "y_train = train[0]" ] }, { "cell_type": "code", "execution_count": 4, "id": "0a1cce75-86a1-4f76-9416-e876e01699e3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n", " ('linearregression', LinearRegression())])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = make_pipeline(TfidfVectorizer(), LinearRegression())\n", "model.fit(x_train, y_train)" ] }, { "cell_type": "code", "execution_count": 5, "id": "2fd18dfa-0dba-460b-a56d-21793baa7124", "metadata": {}, "outputs": [], "source": [ "def readFile(filename):\n", " result = []\n", " with open(filename, 'r', encoding=\"utf-8\") as file:\n", " for line in file:\n", " text = line.split(\"\\t\")[0].strip()\n", " result.append(text)\n", " return result" ] }, { "cell_type": "code", "execution_count": 6, "id": "ce918d1f-2b8d-432c-be19-3a4966062d35", "metadata": {}, "outputs": [], "source": [ "x_dev0 = readFile('dev-0/in.tsv')\n", "dev_predicted = model.predict(x_dev0)\n", "with open('dev-0/out.tsv', 'wt') as f:\n", " for i in dev_predicted:\n", " f.write(str(i)+'\\n')" ] }, { "cell_type": "code", "execution_count": 7, "id": "66e4c057-6a76-4d05-ad60-faa09381fdb1", "metadata": {}, "outputs": [], "source": [ "x_dev1 = readFile('dev-1/in.tsv')\n", "dev_predicted = model.predict(x_dev1)\n", "with open('dev-1/out.tsv', 'wt') as f:\n", " for i in dev_predicted:\n", " f.write(str(i)+'\\n')" ] }, { "cell_type": "code", "execution_count": 8, "id": "3bc8418b-64f1-4163-a0ec-8e3293032341", "metadata": {}, "outputs": [], "source": [ "with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:\n", " x_test = f.readlines()\n", " \n", "# x_test = pd.Series(x_test)\n", "# x_test = vectorizer.transform(x_test)\n", "\n", "test_predicted = model.predict(x_test)\n", "\n", "with open('test-A/out.tsv', 'wt') as f:\n", " for i in test_predicted:\n", " f.write(str(i)+'\\n')" ] }, { "cell_type": "code", "execution_count": 9, "id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook run.ipynb to script\n", "[NbConvertApp] Writing 1597 bytes to run.py\n" ] } ], "source": [ "!jupyter nbconvert --to script run.ipynb" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }