{ "cells": [ { "cell_type": "code", "execution_count": 14, "id": "d103a6c5-a9b4-4547-9e10-f384d716972d", "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "import sklearn\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error" ] }, { "cell_type": "code", "execution_count": 2, "id": "6a2785e6-36b0-4649-91d1-aea8fd3599c1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "D:\\Programy\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n", "\n", "\n", " exec(code_obj, self.user_global_ns, self.user_ns)\n" ] } ], "source": [ "train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n", "train = train.head(500)" ] }, { "cell_type": "code", "execution_count": null, "id": "e4b5f917-bde7-4b69-a394-1ab0fe0b752a", "metadata": {}, "outputs": [], "source": [ "# with open('train/train.tsv', 'r', encoding='utf8') as file:\n", "# train = pd.read_csv(file, sep='\\t')" ] }, { "cell_type": "code", "execution_count": 3, "id": "8cc00b89-1007-4c4a-8ba7-c62b57459b79", "metadata": {}, "outputs": [], "source": [ "x_train = train[4]\n", "y_train = train[0]" ] }, { "cell_type": "code", "execution_count": null, "id": "5faa4b35-ccf7-4656-a08a-99d1d96d8a21", "metadata": {}, "outputs": [], "source": [ "print(x_train)" ] }, { "cell_type": "code", "execution_count": 4, "id": "dd454ce5-a06e-4fbd-a546-83fb94ad0390", "metadata": {}, "outputs": [], "source": [ "x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t')\n", "x_dev = x_dev_data[0]\n", "y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n", "# x_dev.head(1000)\n", "# y_dev.head(1000)" ] }, { "cell_type": "code", "execution_count": 5, "id": "79099730-c5bd-4c5c-a0b0-788512d44226", "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer()" ] }, { "cell_type": "code", "execution_count": 6, "id": "0a1cce75-86a1-4f76-9416-e876e01699e3", "metadata": {}, "outputs": [], "source": [ "x_train = vectorizer.fit_transform(x_train)\n", "x_dev = vectorizer.transform(x_dev)" ] }, { "cell_type": "code", "execution_count": 7, "id": "ef405093-6b4c-4558-add4-40bd0ced244e", "metadata": {}, "outputs": [], "source": [ "model = LinearRegression()" ] }, { "cell_type": "code", "execution_count": 8, "id": "4354553c-6143-43c7-8845-3b2327819481", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LinearRegression()" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(x_train.toarray(), y_train)" ] }, { "cell_type": "code", "execution_count": 9, "id": "cc1270d5-29dc-4f03-82c1-dc03f3e4fa00", "metadata": {}, "outputs": [], "source": [ "dev_predicted = model.predict(x_dev.toarray())\n", "\n", "with open('dev-0/out.tsv', 'wt') as f:\n", " for i in dev_predicted:\n", " f.write(str(i)+'\\n')\n", "\n", "dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n", "# dev_out = dev_out.head(1000)\n", "dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n", "# dev_expected = dev_expected.head(1000)\n", "# print(mean_squared_error(dev_out, dev_expected))\n" ] }, { "cell_type": "code", "execution_count": 16, "id": "7b265b2b-cac1-457c-80f9-6f6dec30045b", "metadata": {}, "outputs": [], "source": [ "dev_expected = dev_expected.head(19998)" ] }, { "cell_type": "code", "execution_count": 17, "id": "223de995-5e91-4254-9214-4fc871c985e9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3579.7645467601897\n" ] } ], "source": [ "print(mean_squared_error(dev_out, dev_expected))" ] }, { "cell_type": "code", "execution_count": 18, "id": "3bc8418b-64f1-4163-a0ec-8e3293032341", "metadata": {}, "outputs": [], "source": [ "with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:\n", " x_test = f.readlines()\n", " \n", "x_test = pd.Series(x_test)\n", "x_test = vectorizer.transform(x_test)\n", "\n", "test_predicted = model.predict(x_test.toarray())\n", "\n", "with open('test-A/out.tsv', 'wt') as f:\n", " for i in test_predicted:\n", " f.write(str(i)+'\\n')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }