{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d103a6c5-a9b4-4547-9e10-f384d716972d", "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "import sklearn\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error" ] }, { "cell_type": "code", "execution_count": 2, "id": "6a2785e6-36b0-4649-91d1-aea8fd3599c1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "D:\\Programy\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n", "\n", "\n", " exec(code_obj, self.user_global_ns, self.user_ns)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "107463\n" ] } ], "source": [ "train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n", "print(len(train))\n", "train = train.head(1500)" ] }, { "cell_type": "code", "execution_count": 3, "id": "8cc00b89-1007-4c4a-8ba7-c62b57459b79", "metadata": {}, "outputs": [], "source": [ "x_train = train[4]\n", "y_train = train[0]" ] }, { "cell_type": "code", "execution_count": 4, "id": "dd454ce5-a06e-4fbd-a546-83fb94ad0390", "metadata": {}, "outputs": [], "source": [ "x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t')\n", "x_dev = x_dev_data[0]\n", "x_dev[19999] = \"to jest tekst testowy\"\n", "x_dev[20000] = \"a ten tekst jest najbardziej testowy\"\n", "y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')" ] }, { "cell_type": "code", "execution_count": 5, "id": "79099730-c5bd-4c5c-a0b0-788512d44226", "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer()" ] }, { "cell_type": "code", "execution_count": 6, "id": "0a1cce75-86a1-4f76-9416-e876e01699e3", "metadata": {}, "outputs": [], "source": [ "x_train = vectorizer.fit_transform(x_train)\n", "x_dev = vectorizer.transform(x_dev)" ] }, { "cell_type": "code", "execution_count": 7, "id": "ef405093-6b4c-4558-add4-40bd0ced244e", "metadata": {}, "outputs": [], "source": [ "model = LinearRegression()" ] }, { "cell_type": "code", "execution_count": 8, "id": "4354553c-6143-43c7-8845-3b2327819481", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LinearRegression()" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(x_train.toarray(), y_train)" ] }, { "cell_type": "code", "execution_count": 9, "id": "cc1270d5-29dc-4f03-82c1-dc03f3e4fa00", "metadata": {}, "outputs": [ { "ename": "MemoryError", "evalue": "Unable to allocate 20.6 GiB for an array with shape (20000, 138052) and data type float64", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mMemoryError\u001b[0m Traceback (most recent call last)", "\u001b[1;32mC:\\Users\\SEBAST~1\\AppData\\Local\\Temp/ipykernel_7064/3948937349.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdev_predicted\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx_dev\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'dev-0/out.tsv'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'wt'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mdev_predicted\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;34m'\\n'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mD:\\Programy\\anaconda3\\lib\\site-packages\\scipy\\sparse\\compressed.py\u001b[0m in \u001b[0;36mtoarray\u001b[1;34m(self, order, out)\u001b[0m\n\u001b[0;32m 1029\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mout\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0morder\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1030\u001b[0m \u001b[0morder\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_swap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'cf'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1031\u001b[1;33m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_process_toarray_args\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1032\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mout\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflags\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mc_contiguous\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflags\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_contiguous\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1033\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Output array must be C or F contiguous'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mD:\\Programy\\anaconda3\\lib\\site-packages\\scipy\\sparse\\base.py\u001b[0m in \u001b[0;36m_process_toarray_args\u001b[1;34m(self, order, out)\u001b[0m\n\u001b[0;32m 1200\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1201\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1202\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1203\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1204\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mMemoryError\u001b[0m: Unable to allocate 20.6 GiB for an array with shape (20000, 138052) and data type float64" ] } ], "source": [ "dev_predicted = model.predict(x_dev.toarray())\n", "\n", "with open('dev-0/out.tsv', 'wt') as f:\n", " for i in dev_predicted:\n", " f.write(str(i)+'\\n')\n", "\n", "dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n", "dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n" ] }, { "cell_type": "code", "execution_count": null, "id": "223de995-5e91-4254-9214-4fc871c985e9", "metadata": {}, "outputs": [], "source": [ "print(mean_squared_error(dev_out, dev_expected))" ] }, { "cell_type": "code", "execution_count": null, "id": "3bc8418b-64f1-4163-a0ec-8e3293032341", "metadata": {}, "outputs": [], "source": [ "with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:\n", " x_test = f.readlines()\n", " \n", "x_test = pd.Series(x_test)\n", "x_test = vectorizer.transform(x_test)\n", "\n", "test_predicted = model.predict(x_test.toarray())\n", "\n", "with open('test-A/out.tsv', 'wt') as f:\n", " for i in test_predicted:\n", " f.write(str(i)+'\\n')" ] }, { "cell_type": "code", "execution_count": null, "id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7", "metadata": {}, "outputs": [], "source": [ "!jupyter nbconvert --to script run.ipynb" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }