retroc2/run.py
2022-05-18 00:53:58 +02:00

89 lines
1.6 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
import pandas as pd
import numpy as np
import sklearn
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.pipeline import make_pipeline
# In[2]:
train = pd.read_csv('train/train.tsv', header=None, sep='\t', error_bad_lines=False)
print(len(train))
train = train.head(40000)
# In[3]:
x_train = train[4]
y_train = train[0]
# In[4]:
x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\t')
x_dev = x_dev_data[0]
x_dev[19999] = "to jest tekst testowy"
x_dev[20000] = "a ten tekst jest najbardziej testowy"
y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
# In[5]:
model = make_pipeline(TfidfVectorizer(), LinearRegression())
model.fit(x_train, y_train)
# In[6]:
dev_predicted = model.predict(x_dev)
with open('dev-0/out.tsv', 'wt') as f:
for i in dev_predicted:
f.write(str(i)+'\n')
dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\t')
dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
# In[7]:
print(mean_squared_error(dev_out, dev_expected))
# In[8]:
with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:
x_test = f.readlines()
# x_test = pd.Series(x_test)
# x_test = vectorizer.transform(x_test)
test_predicted = model.predict(x_test)
with open('test-A/out.tsv', 'wt') as f:
for i in test_predicted:
f.write(str(i)+'\n')
# In[9]:
get_ipython().system('jupyter nbconvert --to script run.ipynb')