102 lines
3.4 KiB
Python
102 lines
3.4 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
class YOLO_Kmeans:
|
||
|
|
||
|
def __init__(self, cluster_number, filename):
|
||
|
self.cluster_number = cluster_number
|
||
|
self.filename = "2012_train.txt"
|
||
|
|
||
|
def iou(self, boxes, clusters): # 1 box -> k clusters
|
||
|
n = boxes.shape[0]
|
||
|
k = self.cluster_number
|
||
|
|
||
|
box_area = boxes[:, 0] * boxes[:, 1]
|
||
|
box_area = box_area.repeat(k)
|
||
|
box_area = np.reshape(box_area, (n, k))
|
||
|
|
||
|
cluster_area = clusters[:, 0] * clusters[:, 1]
|
||
|
cluster_area = np.tile(cluster_area, [1, n])
|
||
|
cluster_area = np.reshape(cluster_area, (n, k))
|
||
|
|
||
|
box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
|
||
|
cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
|
||
|
min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
|
||
|
|
||
|
box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
|
||
|
cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
|
||
|
min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
|
||
|
inter_area = np.multiply(min_w_matrix, min_h_matrix)
|
||
|
|
||
|
result = inter_area / (box_area + cluster_area - inter_area)
|
||
|
return result
|
||
|
|
||
|
def avg_iou(self, boxes, clusters):
|
||
|
accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
|
||
|
return accuracy
|
||
|
|
||
|
def kmeans(self, boxes, k, dist=np.median):
|
||
|
box_number = boxes.shape[0]
|
||
|
distances = np.empty((box_number, k))
|
||
|
last_nearest = np.zeros((box_number,))
|
||
|
np.random.seed()
|
||
|
clusters = boxes[np.random.choice(
|
||
|
box_number, k, replace=False)] # init k clusters
|
||
|
while True:
|
||
|
|
||
|
distances = 1 - self.iou(boxes, clusters)
|
||
|
|
||
|
current_nearest = np.argmin(distances, axis=1)
|
||
|
if (last_nearest == current_nearest).all():
|
||
|
break # clusters won't change
|
||
|
for cluster in range(k):
|
||
|
clusters[cluster] = dist( # update clusters
|
||
|
boxes[current_nearest == cluster], axis=0)
|
||
|
|
||
|
last_nearest = current_nearest
|
||
|
|
||
|
return clusters
|
||
|
|
||
|
def result2txt(self, data):
|
||
|
f = open("yolo_anchors.txt", 'w')
|
||
|
row = np.shape(data)[0]
|
||
|
for i in range(row):
|
||
|
if i == 0:
|
||
|
x_y = "%d,%d" % (data[i][0], data[i][1])
|
||
|
else:
|
||
|
x_y = ", %d,%d" % (data[i][0], data[i][1])
|
||
|
f.write(x_y)
|
||
|
f.close()
|
||
|
|
||
|
def txt2boxes(self):
|
||
|
f = open(self.filename, 'r')
|
||
|
dataSet = []
|
||
|
for line in f:
|
||
|
infos = line.split(" ")
|
||
|
length = len(infos)
|
||
|
for i in range(1, length):
|
||
|
width = int(infos[i].split(",")[2]) - \
|
||
|
int(infos[i].split(",")[0])
|
||
|
height = int(infos[i].split(",")[3]) - \
|
||
|
int(infos[i].split(",")[1])
|
||
|
dataSet.append([width, height])
|
||
|
result = np.array(dataSet)
|
||
|
f.close()
|
||
|
return result
|
||
|
|
||
|
def txt2clusters(self):
|
||
|
all_boxes = self.txt2boxes()
|
||
|
result = self.kmeans(all_boxes, k=self.cluster_number)
|
||
|
result = result[np.lexsort(result.T[0, None])]
|
||
|
self.result2txt(result)
|
||
|
print("K anchors:\n {}".format(result))
|
||
|
print("Accuracy: {:.2f}%".format(
|
||
|
self.avg_iou(all_boxes, result) * 100))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
cluster_number = 9
|
||
|
filename = "2012_train.txt"
|
||
|
kmeans = YOLO_Kmeans(cluster_number, filename)
|
||
|
kmeans.txt2clusters()
|