2023-01-22 21:00:32 +01:00
|
|
|
from PIL import Image
|
|
|
|
import cv2 as cv
|
|
|
|
from yolo import YOLO
|
|
|
|
import ocr
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
import base64
|
|
|
|
|
|
|
|
def grayscale(image):
|
|
|
|
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
def noise_removal(image):
|
|
|
|
kernel = np.ones((1, 1), np.uint8)
|
|
|
|
image = cv.dilate(image, kernel, iterations=1)
|
|
|
|
kernel = np.ones((1, 1), np.uint8)
|
|
|
|
image = cv.erode(image, kernel, iterations=1)
|
|
|
|
image = cv.morphologyEx(image, cv.MORPH_CLOSE, kernel)
|
|
|
|
image = cv.medianBlur(image, 3)
|
|
|
|
return (image)
|
|
|
|
|
|
|
|
def remove_borders(image):
|
|
|
|
contours, heiarchy = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
|
|
|
|
cntsSorted = sorted(contours, key=lambda x:cv.contourArea(x))
|
|
|
|
cnt = cntsSorted[-1]
|
|
|
|
x, y, w, h = cv.boundingRect(cnt)
|
|
|
|
crop = image[y:y+h, x:x+w]
|
|
|
|
return (crop)
|
|
|
|
|
|
|
|
def rotate_image(image, angle):
|
|
|
|
image_center = tuple(np.array(image.shape[1::-1]) / 2)
|
|
|
|
rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0)
|
|
|
|
result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def compute_skew(src_img):
|
|
|
|
|
|
|
|
if len(src_img.shape) == 3:
|
|
|
|
h, w, _ = src_img.shape
|
|
|
|
elif len(src_img.shape) == 2:
|
|
|
|
h, w = src_img.shape
|
|
|
|
else:
|
|
|
|
print('upsupported image type')
|
|
|
|
|
|
|
|
img = cv.medianBlur(src_img, 3)
|
|
|
|
|
|
|
|
edges = cv.Canny(img, threshold1 = 30, threshold2 = 100, apertureSize = 3, L2gradient = True)
|
|
|
|
lines = cv.HoughLinesP(edges, 1, math.pi/180, 30, minLineLength=w / 4.0, maxLineGap=h/4.0)
|
|
|
|
angle = 0.0
|
|
|
|
nlines = lines.size
|
|
|
|
|
|
|
|
#print(nlines)
|
|
|
|
cnt = 0
|
|
|
|
for x1, y1, x2, y2 in lines[0]:
|
|
|
|
ang = np.arctan2(y2 - y1, x2 - x1)
|
|
|
|
#print(ang)
|
|
|
|
if math.fabs(ang) <= 30: # excluding extreme rotations
|
|
|
|
angle += ang
|
|
|
|
cnt += 1
|
|
|
|
|
|
|
|
if cnt == 0:
|
|
|
|
return 0.0
|
|
|
|
return (angle / cnt)*180/math.pi
|
|
|
|
|
|
|
|
def deskew(src_img):
|
|
|
|
return rotate_image(src_img, compute_skew(src_img))
|
|
|
|
|
2023-01-27 01:30:57 +01:00
|
|
|
from keras import backend as K
|
|
|
|
|
|
|
|
|
2023-01-22 21:00:32 +01:00
|
|
|
def detect_img(yolo, img_path, j):
|
|
|
|
try:
|
2023-01-27 01:30:57 +01:00
|
|
|
# processed_image = cv.imread(img_path)
|
|
|
|
# final_image = cv.imread(img_path)
|
|
|
|
# processed_image = cv.resize(processed_image, (3024,3024))
|
|
|
|
# img_path = './img_to_detect.jpeg'
|
|
|
|
# cv.imwrite(img_path, processed_image)
|
2023-01-22 21:00:32 +01:00
|
|
|
image = Image.open(img_path)
|
|
|
|
except:
|
|
|
|
print('Image open Error! Try again!')
|
|
|
|
return None
|
|
|
|
else:
|
2023-01-27 01:30:57 +01:00
|
|
|
# Before prediction
|
|
|
|
# K.clear_session()
|
|
|
|
|
2023-01-22 21:00:32 +01:00
|
|
|
r_image, pred = yolo.detect_image(image)
|
2023-01-27 01:30:57 +01:00
|
|
|
|
|
|
|
# After prediction
|
|
|
|
# K.clear_session()
|
|
|
|
|
2023-01-22 21:00:32 +01:00
|
|
|
r_image.save('detected.png')
|
|
|
|
processed_image = cv.imread(img_path)
|
|
|
|
|
|
|
|
if not pred:
|
|
|
|
return None
|
|
|
|
i = 0
|
2023-01-27 01:30:57 +01:00
|
|
|
texts = []
|
2023-01-22 21:00:32 +01:00
|
|
|
## FIXME : better list mapping
|
|
|
|
for prediction in pred:
|
|
|
|
x1 = prediction[1][0]
|
|
|
|
x2 = prediction[2][0]
|
|
|
|
y1 = prediction[1][1]
|
|
|
|
y2 = prediction[2][1]
|
|
|
|
w = abs(x1 - x2)
|
|
|
|
h = abs(y1 - y2)
|
2023-01-27 01:30:57 +01:00
|
|
|
# print(pred)
|
|
|
|
# print(f'x1: {x1}, x2: {x2}, y1: {y1}, y2: {y2}, w: {w}, h: {h}')
|
2023-01-22 21:00:32 +01:00
|
|
|
|
|
|
|
img = processed_image[y1:y1 + h, x1:x1 + w]
|
|
|
|
img = deskew(img)
|
|
|
|
|
2023-01-27 01:30:57 +01:00
|
|
|
# gray_image = cv.cvtColor(robot_img, cv.COLOR_BGR2GRAY)
|
|
|
|
# # gray_image = cv.bilateralFilter(gray_image, 11, 17, 17)
|
|
|
|
# gaussian_blur = cv.GaussianBlur(gray_image, (9, 9), 0)
|
|
|
|
# edged = cv.Canny(gaussian_blur, 255, 255)
|
|
|
|
#
|
|
|
|
# image_file = './img0.png'
|
|
|
|
# img = cv.imread(image_file)
|
|
|
|
|
2023-01-22 21:00:32 +01:00
|
|
|
gray_image = grayscale(img)
|
2023-01-27 01:30:57 +01:00
|
|
|
thresh, im_bw = cv.threshold(gray_image, 125, 150, cv.THRESH_BINARY) #the best = 120,150; 100, 150; 150, 210
|
2023-01-22 21:00:32 +01:00
|
|
|
no_noise = noise_removal(im_bw)
|
|
|
|
no_borders = remove_borders(no_noise)
|
|
|
|
|
2023-01-27 01:30:57 +01:00
|
|
|
# blur = cv.GaussianBlur(gray_image, (3, 3), 0)
|
|
|
|
# thresh = cv.threshold(blur, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)[1]
|
|
|
|
#
|
|
|
|
# # Morph open to remove noise and invert image
|
|
|
|
# kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
|
|
|
|
# opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=1)
|
|
|
|
# no_borders = 255 - no_borders
|
|
|
|
|
2023-01-22 21:00:32 +01:00
|
|
|
cv.imwrite(f'img/img{j}{i}.png', no_borders)
|
|
|
|
text = ocr.get_text_from_image(f'img/img{j}{i}.png')
|
2023-01-27 01:30:57 +01:00
|
|
|
texts.append(text)
|
2023-01-22 21:00:32 +01:00
|
|
|
if i > 0:
|
|
|
|
processed_image = cv.imread(f'final/final{j}{i-1}.png')
|
|
|
|
res = cv.rectangle(processed_image, (x1, y1), (x1+w, y1+h), (0, 0, 255), 15)
|
|
|
|
res = cv.putText(res, text, (x1, y1 - 20), cv.FONT_HERSHEY_SIMPLEX, 4, (0, 0, 255), 15, cv.LINE_AA)
|
|
|
|
cv.imwrite(f'final/final{j}{i}.png', res)
|
|
|
|
my_string = 'ok'
|
|
|
|
i += 1
|
2023-01-27 01:30:57 +01:00
|
|
|
# with open("final.png", "rb") as img_file:
|
|
|
|
# my_string = base64.b64encode(img_file.read())
|
|
|
|
# print(my_string)
|
2023-01-27 00:11:51 +01:00
|
|
|
with open(f"final/final{j}{i-1}.png", "rb") as img_file:
|
|
|
|
my_string = base64.b64encode(img_file.read())
|
2023-01-27 01:30:57 +01:00
|
|
|
return my_string, texts
|
2023-01-22 21:00:32 +01:00
|
|
|
|
2023-01-27 01:30:57 +01:00
|
|
|
# text_file = open("base64.txt", "w")
|
|
|
|
# text_file.write(str(my_string))
|
|
|
|
# text_file.close()
|
2023-01-22 21:00:32 +01:00
|
|
|
|
2023-01-27 01:30:57 +01:00
|
|
|
# decoded data
|
|
|
|
# decoded_data = base64.b64decode((my_string))
|
|
|
|
# img_file = open('base64.png', 'wb')
|
|
|
|
# img_file.write(decoded_data)
|
|
|
|
# img_file.close()
|
|
|
|
|
|
|
|
def detect_license_plate(model, img_path, i):
|
|
|
|
str, texts = detect_img(model, img_path, i)
|
|
|
|
if not str or not texts:
|
|
|
|
return None, [None]
|
|
|
|
|
|
|
|
return str, texts
|
|
|
|
|
|
|
|
# yolo_model = YOLO()
|
|
|
|
# for i in range(18,100):
|
|
|
|
# image_path = rf'Images/New/IMG_25{i}.jpeg' #95; 3909, 2491
|
|
|
|
# detect_license_plate(model=yolo_model, img_path=image_path, i=i)
|
|
|
|
# image_path = rf'./Images/New/IMG_5016.jpeg' #95; 3909, 2491
|
|
|
|
# detect_license_plate(model=yolo_model, img_path=image_path, i=0)
|
|
|
|
# print(ocr.get_text_from_image(f'img0.png'))
|
|
|
|
# print(ocr.keras_ocr_func())
|
|
|
|
# print(ocr.tesseract_ocr())
|