2023-01-22 21:00:32 +01:00
|
|
|
"""
|
|
|
|
Retrain the YOLO model for your own dataset.
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import keras.backend as K
|
|
|
|
from keras.layers import Input, Lambda
|
|
|
|
from keras.models import Model
|
|
|
|
from keras.optimizers import Adam
|
|
|
|
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
|
|
|
|
|
|
|
|
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
|
|
|
|
from yolo3.utils import get_random_data
|
|
|
|
|
|
|
|
|
|
|
|
def _main():
|
|
|
|
annotation_path = 'train.txt'
|
|
|
|
log_dir = 'logs/000/'
|
|
|
|
classes_path = 'model_data/coco_classes.txt'
|
|
|
|
anchors_path = 'model_data/yolo_anchors.txt'
|
|
|
|
class_names = get_classes(classes_path)
|
|
|
|
num_classes = len(class_names)
|
|
|
|
anchors = get_anchors(anchors_path)
|
|
|
|
|
|
|
|
input_shape = (416,416) # multiple of 32, hw
|
|
|
|
|
|
|
|
model, bottleneck_model, last_layer_model = create_model(input_shape, anchors, num_classes,
|
2023-02-01 00:25:23 +01:00
|
|
|
freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
|
2023-01-22 21:00:32 +01:00
|
|
|
|
|
|
|
logging = TensorBoard(log_dir=log_dir)
|
|
|
|
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
|
|
|
|
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
|
|
|
|
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
|
|
|
|
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
|
|
|
|
|
|
|
|
val_split = 0.1
|
|
|
|
with open(annotation_path) as f:
|
|
|
|
lines = f.readlines()
|
|
|
|
np.random.seed(10101)
|
|
|
|
np.random.shuffle(lines)
|
|
|
|
np.random.seed(None)
|
|
|
|
num_val = int(len(lines)*val_split)
|
|
|
|
num_train = len(lines) - num_val
|
|
|
|
|
|
|
|
# Train with frozen layers first, to get a stable loss.
|
|
|
|
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
|
|
|
|
if True:
|
|
|
|
# perform bottleneck training
|
|
|
|
if not os.path.isfile("bottlenecks.npz"):
|
|
|
|
print("calculating bottlenecks")
|
|
|
|
batch_size=8
|
|
|
|
bottlenecks=bottleneck_model.predict_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, random=False, verbose=True),
|
|
|
|
steps=(len(lines)//batch_size)+1, max_queue_size=1)
|
|
|
|
np.savez("bottlenecks.npz", bot0=bottlenecks[0], bot1=bottlenecks[1], bot2=bottlenecks[2])
|
|
|
|
|
|
|
|
# load bottleneck features from file
|
|
|
|
dict_bot=np.load("bottlenecks.npz")
|
|
|
|
bottlenecks_train=[dict_bot["bot0"][:num_train], dict_bot["bot1"][:num_train], dict_bot["bot2"][:num_train]]
|
|
|
|
bottlenecks_val=[dict_bot["bot0"][num_train:], dict_bot["bot1"][num_train:], dict_bot["bot2"][num_train:]]
|
|
|
|
|
|
|
|
# train last layers with fixed bottleneck features
|
|
|
|
batch_size=8
|
|
|
|
print("Training last layers with bottleneck features")
|
|
|
|
print('with {} samples, val on {} samples and batch size {}.'.format(num_train, num_val, batch_size))
|
|
|
|
last_layer_model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred})
|
|
|
|
last_layer_model.fit_generator(bottleneck_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, bottlenecks_train),
|
|
|
|
steps_per_epoch=max(1, num_train//batch_size),
|
|
|
|
validation_data=bottleneck_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, bottlenecks_val),
|
|
|
|
validation_steps=max(1, num_val//batch_size),
|
|
|
|
epochs=30,
|
|
|
|
initial_epoch=0, max_queue_size=1)
|
|
|
|
model.save_weights(log_dir + 'trained_weights_stage_0.h5')
|
|
|
|
|
|
|
|
# train last layers with random augmented data
|
|
|
|
model.compile(optimizer=Adam(lr=1e-3), loss={
|
|
|
|
# use custom yolo_loss Lambda layer.
|
|
|
|
'yolo_loss': lambda y_true, y_pred: y_pred})
|
|
|
|
batch_size = 16
|
|
|
|
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
|
|
|
|
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
|
|
|
|
steps_per_epoch=max(1, num_train//batch_size),
|
|
|
|
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
|
|
|
|
validation_steps=max(1, num_val//batch_size),
|
|
|
|
epochs=50,
|
|
|
|
initial_epoch=0,
|
|
|
|
callbacks=[logging, checkpoint])
|
|
|
|
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
|
|
|
|
|
|
|
|
# Unfreeze and continue training, to fine-tune.
|
|
|
|
# Train longer if the result is not good.
|
|
|
|
if True:
|
|
|
|
for i in range(len(model.layers)):
|
|
|
|
model.layers[i].trainable = True
|
|
|
|
model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
|
|
|
|
print('Unfreeze all of the layers.')
|
|
|
|
|
|
|
|
batch_size = 4 # note that more GPU memory is required after unfreezing the body
|
|
|
|
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
|
|
|
|
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
|
|
|
|
steps_per_epoch=max(1, num_train//batch_size),
|
|
|
|
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
|
|
|
|
validation_steps=max(1, num_val//batch_size),
|
|
|
|
epochs=100,
|
|
|
|
initial_epoch=50,
|
|
|
|
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
|
|
|
|
model.save_weights(log_dir + 'trained_weights_final.h5')
|
|
|
|
|
|
|
|
# Further training if needed.
|
|
|
|
|
|
|
|
|
|
|
|
def get_classes(classes_path):
|
|
|
|
'''loads the classes'''
|
|
|
|
with open(classes_path) as f:
|
|
|
|
class_names = f.readlines()
|
|
|
|
class_names = [c.strip() for c in class_names]
|
|
|
|
return class_names
|
|
|
|
|
|
|
|
def get_anchors(anchors_path):
|
|
|
|
'''loads the anchors from a file'''
|
|
|
|
with open(anchors_path) as f:
|
|
|
|
anchors = f.readline()
|
|
|
|
anchors = [float(x) for x in anchors.split(',')]
|
|
|
|
return np.array(anchors).reshape(-1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
|
|
|
|
weights_path='model_data/yolo_weights.h5'):
|
|
|
|
'''create the training model'''
|
|
|
|
K.clear_session() # get a new session
|
|
|
|
image_input = Input(shape=(None, None, 3))
|
|
|
|
h, w = input_shape
|
|
|
|
num_anchors = len(anchors)
|
|
|
|
|
|
|
|
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
|
|
|
|
num_anchors//3, num_classes+5)) for l in range(3)]
|
|
|
|
|
|
|
|
model_body = yolo_body(image_input, num_anchors//3, num_classes)
|
|
|
|
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
|
|
|
|
|
|
|
|
if load_pretrained:
|
|
|
|
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
|
|
|
|
print('Load weights {}.'.format(weights_path))
|
|
|
|
if freeze_body in [1, 2]:
|
|
|
|
# Freeze darknet53 body or freeze all but 3 output layers.
|
|
|
|
num = (185, len(model_body.layers)-3)[freeze_body-1]
|
|
|
|
for i in range(num): model_body.layers[i].trainable = False
|
|
|
|
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
|
|
|
|
|
|
|
|
# get output of second last layers and create bottleneck model of it
|
|
|
|
out1=model_body.layers[246].output
|
|
|
|
out2=model_body.layers[247].output
|
|
|
|
out3=model_body.layers[248].output
|
|
|
|
bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])
|
|
|
|
|
|
|
|
# create last layer model of last layers from yolo model
|
|
|
|
in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list())
|
|
|
|
in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
|
|
|
|
in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
|
|
|
|
last_out0=model_body.layers[249](in0)
|
|
|
|
last_out1=model_body.layers[250](in1)
|
|
|
|
last_out2=model_body.layers[251](in2)
|
|
|
|
model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
|
|
|
|
model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
|
|
|
|
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
|
|
|
|
[*model_last.output, *y_true])
|
|
|
|
last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)
|
|
|
|
|
|
|
|
|
|
|
|
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
|
|
|
|
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
|
|
|
|
[*model_body.output, *y_true])
|
|
|
|
model = Model([model_body.input, *y_true], model_loss)
|
|
|
|
|
|
|
|
return model, bottleneck_model, last_layer_model
|
|
|
|
|
|
|
|
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
|
|
|
|
'''data generator for fit_generator'''
|
|
|
|
n = len(annotation_lines)
|
|
|
|
i = 0
|
|
|
|
while True:
|
|
|
|
image_data = []
|
|
|
|
box_data = []
|
|
|
|
for b in range(batch_size):
|
|
|
|
if i==0 and random:
|
|
|
|
np.random.shuffle(annotation_lines)
|
|
|
|
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
|
|
|
|
image_data.append(image)
|
|
|
|
box_data.append(box)
|
|
|
|
i = (i+1) % n
|
|
|
|
image_data = np.array(image_data)
|
|
|
|
if verbose:
|
|
|
|
print("Progress: ",i,"/",n)
|
|
|
|
box_data = np.array(box_data)
|
|
|
|
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
|
|
|
|
yield [image_data, *y_true], np.zeros(batch_size)
|
|
|
|
|
|
|
|
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
|
|
|
|
n = len(annotation_lines)
|
|
|
|
if n==0 or batch_size<=0: return None
|
|
|
|
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random, verbose)
|
|
|
|
|
|
|
|
def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks):
|
|
|
|
n = len(annotation_lines)
|
|
|
|
i = 0
|
|
|
|
while True:
|
|
|
|
box_data = []
|
|
|
|
b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3]))
|
|
|
|
b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3]))
|
|
|
|
b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3]))
|
|
|
|
for b in range(batch_size):
|
|
|
|
_, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False)
|
|
|
|
box_data.append(box)
|
|
|
|
b0[b]=bottlenecks[0][i]
|
|
|
|
b1[b]=bottlenecks[1][i]
|
|
|
|
b2[b]=bottlenecks[2][i]
|
|
|
|
i = (i+1) % n
|
|
|
|
box_data = np.array(box_data)
|
|
|
|
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
|
|
|
|
yield [b0, b1, b2, *y_true], np.zeros(batch_size)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
_main()
|