+ remove two files
This commit is contained in:
parent
b3724c49f4
commit
39c5b5729a
@ -1,25 +0,0 @@
|
||||
## keras-yolo3 with Roboflow
|
||||
|
||||
[![license](https://img.shields.io/github/license/mashape/apistatus.svg)](LICENSE)
|
||||
|
||||
A Keras implementation of YOLOv3 (Tensorflow backend) inspired by [allanzelener/YAD2K](https://github.com/allanzelener/YAD2K).
|
||||
|
||||
## What You Will Learn
|
||||
* How to load your custom image detection data from Roboflow
|
||||
* How set up the YOLOv3 model in keras
|
||||
* How to train the YOLOv3 model
|
||||
* How to use the model for inference
|
||||
* How to save the keras model weights for future use
|
||||
|
||||
## Resources
|
||||
|
||||
* [This blog post](https://blog.roboflow.ai/training-a-yolov3-object-detection-model-with-a-custom-dataset/) provides a deep dive into the tutorial
|
||||
* This notebook provides the code necessary to run the tutorial [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ByRi9d6_Yzu0nrEKArmLMLuMaZjYfygO#scrollTo=WgHANbxqWJPa)
|
||||
* For reading purposes, the notebook is also saved in Tutorial.ipynb
|
||||
|
||||
## About Roboflow for Data Management
|
||||
|
||||
[Roboflow](https://roboflow.ai) makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
|
||||
Developers reduce 50% of their code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
|
||||
|
||||
![alt text](https://i.imgur.com/WHFqYSJ.png)
|
@ -1,222 +0,0 @@
|
||||
"""
|
||||
Retrain the YOLO model for your own dataset.
|
||||
"""
|
||||
import os
|
||||
import numpy as np
|
||||
import keras.backend as K
|
||||
from keras.layers import Input, Lambda
|
||||
from keras.models import Model
|
||||
from keras.optimizers import Adam
|
||||
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
|
||||
|
||||
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
|
||||
from yolo3.utils import get_random_data
|
||||
|
||||
|
||||
def _main():
|
||||
annotation_path = 'train.txt'
|
||||
log_dir = 'logs/000/'
|
||||
classes_path = 'model_data/coco_classes.txt'
|
||||
anchors_path = 'model_data/yolo_anchors.txt'
|
||||
class_names = get_classes(classes_path)
|
||||
num_classes = len(class_names)
|
||||
anchors = get_anchors(anchors_path)
|
||||
|
||||
input_shape = (416,416) # multiple of 32, hw
|
||||
|
||||
model, bottleneck_model, last_layer_model = create_model(input_shape, anchors, num_classes,
|
||||
freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
|
||||
|
||||
logging = TensorBoard(log_dir=log_dir)
|
||||
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
|
||||
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
|
||||
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
|
||||
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
|
||||
|
||||
val_split = 0.1
|
||||
with open(annotation_path) as f:
|
||||
lines = f.readlines()
|
||||
np.random.seed(10101)
|
||||
np.random.shuffle(lines)
|
||||
np.random.seed(None)
|
||||
num_val = int(len(lines)*val_split)
|
||||
num_train = len(lines) - num_val
|
||||
|
||||
# Train with frozen layers first, to get a stable loss.
|
||||
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
|
||||
if True:
|
||||
# perform bottleneck training
|
||||
if not os.path.isfile("bottlenecks.npz"):
|
||||
print("calculating bottlenecks")
|
||||
batch_size=8
|
||||
bottlenecks=bottleneck_model.predict_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, random=False, verbose=True),
|
||||
steps=(len(lines)//batch_size)+1, max_queue_size=1)
|
||||
np.savez("bottlenecks.npz", bot0=bottlenecks[0], bot1=bottlenecks[1], bot2=bottlenecks[2])
|
||||
|
||||
# load bottleneck features from file
|
||||
dict_bot=np.load("bottlenecks.npz")
|
||||
bottlenecks_train=[dict_bot["bot0"][:num_train], dict_bot["bot1"][:num_train], dict_bot["bot2"][:num_train]]
|
||||
bottlenecks_val=[dict_bot["bot0"][num_train:], dict_bot["bot1"][num_train:], dict_bot["bot2"][num_train:]]
|
||||
|
||||
# train last layers with fixed bottleneck features
|
||||
batch_size=8
|
||||
print("Training last layers with bottleneck features")
|
||||
print('with {} samples, val on {} samples and batch size {}.'.format(num_train, num_val, batch_size))
|
||||
last_layer_model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred})
|
||||
last_layer_model.fit_generator(bottleneck_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, bottlenecks_train),
|
||||
steps_per_epoch=max(1, num_train//batch_size),
|
||||
validation_data=bottleneck_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, bottlenecks_val),
|
||||
validation_steps=max(1, num_val//batch_size),
|
||||
epochs=30,
|
||||
initial_epoch=0, max_queue_size=1)
|
||||
model.save_weights(log_dir + 'trained_weights_stage_0.h5')
|
||||
|
||||
# train last layers with random augmented data
|
||||
model.compile(optimizer=Adam(lr=1e-3), loss={
|
||||
# use custom yolo_loss Lambda layer.
|
||||
'yolo_loss': lambda y_true, y_pred: y_pred})
|
||||
batch_size = 16
|
||||
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
|
||||
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
|
||||
steps_per_epoch=max(1, num_train//batch_size),
|
||||
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
|
||||
validation_steps=max(1, num_val//batch_size),
|
||||
epochs=50,
|
||||
initial_epoch=0,
|
||||
callbacks=[logging, checkpoint])
|
||||
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
|
||||
|
||||
# Unfreeze and continue training, to fine-tune.
|
||||
# Train longer if the result is not good.
|
||||
if True:
|
||||
for i in range(len(model.layers)):
|
||||
model.layers[i].trainable = True
|
||||
model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
|
||||
print('Unfreeze all of the layers.')
|
||||
|
||||
batch_size = 4 # note that more GPU memory is required after unfreezing the body
|
||||
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
|
||||
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
|
||||
steps_per_epoch=max(1, num_train//batch_size),
|
||||
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
|
||||
validation_steps=max(1, num_val//batch_size),
|
||||
epochs=100,
|
||||
initial_epoch=50,
|
||||
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
|
||||
model.save_weights(log_dir + 'trained_weights_final.h5')
|
||||
|
||||
# Further training if needed.
|
||||
|
||||
|
||||
def get_classes(classes_path):
|
||||
'''loads the classes'''
|
||||
with open(classes_path) as f:
|
||||
class_names = f.readlines()
|
||||
class_names = [c.strip() for c in class_names]
|
||||
return class_names
|
||||
|
||||
def get_anchors(anchors_path):
|
||||
'''loads the anchors from a file'''
|
||||
with open(anchors_path) as f:
|
||||
anchors = f.readline()
|
||||
anchors = [float(x) for x in anchors.split(',')]
|
||||
return np.array(anchors).reshape(-1, 2)
|
||||
|
||||
|
||||
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
|
||||
weights_path='model_data/yolo_weights.h5'):
|
||||
'''create the training model'''
|
||||
K.clear_session() # get a new session
|
||||
image_input = Input(shape=(None, None, 3))
|
||||
h, w = input_shape
|
||||
num_anchors = len(anchors)
|
||||
|
||||
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
|
||||
num_anchors//3, num_classes+5)) for l in range(3)]
|
||||
|
||||
model_body = yolo_body(image_input, num_anchors//3, num_classes)
|
||||
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
|
||||
|
||||
if load_pretrained:
|
||||
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
|
||||
print('Load weights {}.'.format(weights_path))
|
||||
if freeze_body in [1, 2]:
|
||||
# Freeze darknet53 body or freeze all but 3 output layers.
|
||||
num = (185, len(model_body.layers)-3)[freeze_body-1]
|
||||
for i in range(num): model_body.layers[i].trainable = False
|
||||
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
|
||||
|
||||
# get output of second last layers and create bottleneck model of it
|
||||
out1=model_body.layers[246].output
|
||||
out2=model_body.layers[247].output
|
||||
out3=model_body.layers[248].output
|
||||
bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])
|
||||
|
||||
# create last layer model of last layers from yolo model
|
||||
in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list())
|
||||
in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
|
||||
in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
|
||||
last_out0=model_body.layers[249](in0)
|
||||
last_out1=model_body.layers[250](in1)
|
||||
last_out2=model_body.layers[251](in2)
|
||||
model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
|
||||
model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
|
||||
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
|
||||
[*model_last.output, *y_true])
|
||||
last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)
|
||||
|
||||
|
||||
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
|
||||
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
|
||||
[*model_body.output, *y_true])
|
||||
model = Model([model_body.input, *y_true], model_loss)
|
||||
|
||||
return model, bottleneck_model, last_layer_model
|
||||
|
||||
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
|
||||
'''data generator for fit_generator'''
|
||||
n = len(annotation_lines)
|
||||
i = 0
|
||||
while True:
|
||||
image_data = []
|
||||
box_data = []
|
||||
for b in range(batch_size):
|
||||
if i==0 and random:
|
||||
np.random.shuffle(annotation_lines)
|
||||
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
|
||||
image_data.append(image)
|
||||
box_data.append(box)
|
||||
i = (i+1) % n
|
||||
image_data = np.array(image_data)
|
||||
if verbose:
|
||||
print("Progress: ",i,"/",n)
|
||||
box_data = np.array(box_data)
|
||||
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
|
||||
yield [image_data, *y_true], np.zeros(batch_size)
|
||||
|
||||
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
|
||||
n = len(annotation_lines)
|
||||
if n==0 or batch_size<=0: return None
|
||||
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random, verbose)
|
||||
|
||||
def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks):
|
||||
n = len(annotation_lines)
|
||||
i = 0
|
||||
while True:
|
||||
box_data = []
|
||||
b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3]))
|
||||
b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3]))
|
||||
b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3]))
|
||||
for b in range(batch_size):
|
||||
_, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False)
|
||||
box_data.append(box)
|
||||
b0[b]=bottlenecks[0][i]
|
||||
b1[b]=bottlenecks[1][i]
|
||||
b2[b]=bottlenecks[2][i]
|
||||
i = (i+1) % n
|
||||
box_data = np.array(box_data)
|
||||
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
|
||||
yield [b0, b1, b2, *y_true], np.zeros(batch_size)
|
||||
|
||||
if __name__ == '__main__':
|
||||
_main()
|
Loading…
Reference in New Issue
Block a user