first commit with deletions

This commit is contained in:
Szymon Parafiński 2023-02-01 00:05:00 +01:00
parent dadca174b8
commit 56342cf7b0
10 changed files with 0 additions and 1979 deletions

21
LICENSE
View File

@ -1,21 +0,0 @@
MIT License
Copyright (c) 2018 qqwweee
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 MiB

File diff suppressed because one or more lines are too long

View File

@ -1,52 +0,0 @@
import json
from collections import defaultdict
name_box_id = defaultdict(list)
id_name = dict()
f = open(
"mscoco2017/annotations/instances_train2017.json",
encoding='utf-8')
data = json.load(f)
annotations = data['annotations']
for ant in annotations:
id = ant['image_id']
name = 'mscoco2017/train2017/%012d.jpg' % id
cat = ant['category_id']
if cat >= 1 and cat <= 11:
cat = cat - 1
elif cat >= 13 and cat <= 25:
cat = cat - 2
elif cat >= 27 and cat <= 28:
cat = cat - 3
elif cat >= 31 and cat <= 44:
cat = cat - 5
elif cat >= 46 and cat <= 65:
cat = cat - 6
elif cat == 67:
cat = cat - 7
elif cat == 70:
cat = cat - 9
elif cat >= 72 and cat <= 82:
cat = cat - 10
elif cat >= 84 and cat <= 90:
cat = cat - 11
name_box_id[name].append([ant['bbox'], cat])
f = open('train.txt', 'w')
for key in name_box_id.keys():
f.write(key)
box_infos = name_box_id[key]
for info in box_infos:
x_min = int(info[0][0])
y_min = int(info[0][1])
x_max = x_min + int(info[0][2])
y_max = y_min + int(info[0][3])
box_info = " %d,%d,%d,%d,%d" % (
x_min, y_min, x_max, y_max, int(info[1]))
f.write(box_info)
f.write('\n')
f.close()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

After

Width:  |  Height:  |  Size: 7.4 KiB

View File

101
kmeans.py
View File

@ -1,101 +0,0 @@
import numpy as np
class YOLO_Kmeans:
def __init__(self, cluster_number, filename):
self.cluster_number = cluster_number
self.filename = "2012_train.txt"
def iou(self, boxes, clusters): # 1 box -> k clusters
n = boxes.shape[0]
k = self.cluster_number
box_area = boxes[:, 0] * boxes[:, 1]
box_area = box_area.repeat(k)
box_area = np.reshape(box_area, (n, k))
cluster_area = clusters[:, 0] * clusters[:, 1]
cluster_area = np.tile(cluster_area, [1, n])
cluster_area = np.reshape(cluster_area, (n, k))
box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
inter_area = np.multiply(min_w_matrix, min_h_matrix)
result = inter_area / (box_area + cluster_area - inter_area)
return result
def avg_iou(self, boxes, clusters):
accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
return accuracy
def kmeans(self, boxes, k, dist=np.median):
box_number = boxes.shape[0]
distances = np.empty((box_number, k))
last_nearest = np.zeros((box_number,))
np.random.seed()
clusters = boxes[np.random.choice(
box_number, k, replace=False)] # init k clusters
while True:
distances = 1 - self.iou(boxes, clusters)
current_nearest = np.argmin(distances, axis=1)
if (last_nearest == current_nearest).all():
break # clusters won't change
for cluster in range(k):
clusters[cluster] = dist( # update clusters
boxes[current_nearest == cluster], axis=0)
last_nearest = current_nearest
return clusters
def result2txt(self, data):
f = open("yolo_anchors.txt", 'w')
row = np.shape(data)[0]
for i in range(row):
if i == 0:
x_y = "%d,%d" % (data[i][0], data[i][1])
else:
x_y = ", %d,%d" % (data[i][0], data[i][1])
f.write(x_y)
f.close()
def txt2boxes(self):
f = open(self.filename, 'r')
dataSet = []
for line in f:
infos = line.split(" ")
length = len(infos)
for i in range(1, length):
width = int(infos[i].split(",")[2]) - \
int(infos[i].split(",")[0])
height = int(infos[i].split(",")[3]) - \
int(infos[i].split(",")[1])
dataSet.append([width, height])
result = np.array(dataSet)
f.close()
return result
def txt2clusters(self):
all_boxes = self.txt2boxes()
result = self.kmeans(all_boxes, k=self.cluster_number)
result = result[np.lexsort(result.T[0, None])]
self.result2txt(result)
print("K anchors:\n {}".format(result))
print("Accuracy: {:.2f}%".format(
self.avg_iou(all_boxes, result) * 100))
if __name__ == "__main__":
cluster_number = 9
filename = "2012_train.txt"
kmeans = YOLO_Kmeans(cluster_number, filename)
kmeans.txt2clusters()