first commit with deletions
This commit is contained in:
parent
dadca174b8
commit
56342cf7b0
21
LICENSE
21
LICENSE
@ -1,21 +0,0 @@
|
|||||||
MIT License
|
|
||||||
|
|
||||||
Copyright (c) 2018 qqwweee
|
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
||||||
of this software and associated documentation files (the "Software"), to deal
|
|
||||||
in the Software without restriction, including without limitation the rights
|
|
||||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
||||||
copies of the Software, and to permit persons to whom the Software is
|
|
||||||
furnished to do so, subject to the following conditions:
|
|
||||||
|
|
||||||
The above copyright notice and this permission notice shall be included in all
|
|
||||||
copies or substantial portions of the Software.
|
|
||||||
|
|
||||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
||||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
||||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
||||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
||||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
||||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
||||||
SOFTWARE.
|
|
1804
Tutorial.ipynb
1804
Tutorial.ipynb
File diff suppressed because it is too large
Load Diff
BIN
base64.png
BIN
base64.png
Binary file not shown.
Before Width: | Height: | Size: 18 MiB |
File diff suppressed because one or more lines are too long
@ -1,52 +0,0 @@
|
|||||||
import json
|
|
||||||
from collections import defaultdict
|
|
||||||
|
|
||||||
name_box_id = defaultdict(list)
|
|
||||||
id_name = dict()
|
|
||||||
f = open(
|
|
||||||
"mscoco2017/annotations/instances_train2017.json",
|
|
||||||
encoding='utf-8')
|
|
||||||
data = json.load(f)
|
|
||||||
|
|
||||||
annotations = data['annotations']
|
|
||||||
for ant in annotations:
|
|
||||||
id = ant['image_id']
|
|
||||||
name = 'mscoco2017/train2017/%012d.jpg' % id
|
|
||||||
cat = ant['category_id']
|
|
||||||
|
|
||||||
if cat >= 1 and cat <= 11:
|
|
||||||
cat = cat - 1
|
|
||||||
elif cat >= 13 and cat <= 25:
|
|
||||||
cat = cat - 2
|
|
||||||
elif cat >= 27 and cat <= 28:
|
|
||||||
cat = cat - 3
|
|
||||||
elif cat >= 31 and cat <= 44:
|
|
||||||
cat = cat - 5
|
|
||||||
elif cat >= 46 and cat <= 65:
|
|
||||||
cat = cat - 6
|
|
||||||
elif cat == 67:
|
|
||||||
cat = cat - 7
|
|
||||||
elif cat == 70:
|
|
||||||
cat = cat - 9
|
|
||||||
elif cat >= 72 and cat <= 82:
|
|
||||||
cat = cat - 10
|
|
||||||
elif cat >= 84 and cat <= 90:
|
|
||||||
cat = cat - 11
|
|
||||||
|
|
||||||
name_box_id[name].append([ant['bbox'], cat])
|
|
||||||
|
|
||||||
f = open('train.txt', 'w')
|
|
||||||
for key in name_box_id.keys():
|
|
||||||
f.write(key)
|
|
||||||
box_infos = name_box_id[key]
|
|
||||||
for info in box_infos:
|
|
||||||
x_min = int(info[0][0])
|
|
||||||
y_min = int(info[0][1])
|
|
||||||
x_max = x_min + int(info[0][2])
|
|
||||||
y_max = y_min + int(info[0][3])
|
|
||||||
|
|
||||||
box_info = " %d,%d,%d,%d,%d" % (
|
|
||||||
x_min, y_min, x_max, y_max, int(info[1]))
|
|
||||||
f.write(box_info)
|
|
||||||
f.write('\n')
|
|
||||||
f.close()
|
|
BIN
detected.png
BIN
detected.png
Binary file not shown.
Before Width: | Height: | Size: 13 MiB |
Binary file not shown.
Before Width: | Height: | Size: 19 MiB |
BIN
img/img00.png
BIN
img/img00.png
Binary file not shown.
Before Width: | Height: | Size: 3.8 KiB After Width: | Height: | Size: 7.4 KiB |
101
kmeans.py
101
kmeans.py
@ -1,101 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
class YOLO_Kmeans:
|
|
||||||
|
|
||||||
def __init__(self, cluster_number, filename):
|
|
||||||
self.cluster_number = cluster_number
|
|
||||||
self.filename = "2012_train.txt"
|
|
||||||
|
|
||||||
def iou(self, boxes, clusters): # 1 box -> k clusters
|
|
||||||
n = boxes.shape[0]
|
|
||||||
k = self.cluster_number
|
|
||||||
|
|
||||||
box_area = boxes[:, 0] * boxes[:, 1]
|
|
||||||
box_area = box_area.repeat(k)
|
|
||||||
box_area = np.reshape(box_area, (n, k))
|
|
||||||
|
|
||||||
cluster_area = clusters[:, 0] * clusters[:, 1]
|
|
||||||
cluster_area = np.tile(cluster_area, [1, n])
|
|
||||||
cluster_area = np.reshape(cluster_area, (n, k))
|
|
||||||
|
|
||||||
box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
|
|
||||||
cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
|
|
||||||
min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
|
|
||||||
|
|
||||||
box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
|
|
||||||
cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
|
|
||||||
min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
|
|
||||||
inter_area = np.multiply(min_w_matrix, min_h_matrix)
|
|
||||||
|
|
||||||
result = inter_area / (box_area + cluster_area - inter_area)
|
|
||||||
return result
|
|
||||||
|
|
||||||
def avg_iou(self, boxes, clusters):
|
|
||||||
accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
|
|
||||||
return accuracy
|
|
||||||
|
|
||||||
def kmeans(self, boxes, k, dist=np.median):
|
|
||||||
box_number = boxes.shape[0]
|
|
||||||
distances = np.empty((box_number, k))
|
|
||||||
last_nearest = np.zeros((box_number,))
|
|
||||||
np.random.seed()
|
|
||||||
clusters = boxes[np.random.choice(
|
|
||||||
box_number, k, replace=False)] # init k clusters
|
|
||||||
while True:
|
|
||||||
|
|
||||||
distances = 1 - self.iou(boxes, clusters)
|
|
||||||
|
|
||||||
current_nearest = np.argmin(distances, axis=1)
|
|
||||||
if (last_nearest == current_nearest).all():
|
|
||||||
break # clusters won't change
|
|
||||||
for cluster in range(k):
|
|
||||||
clusters[cluster] = dist( # update clusters
|
|
||||||
boxes[current_nearest == cluster], axis=0)
|
|
||||||
|
|
||||||
last_nearest = current_nearest
|
|
||||||
|
|
||||||
return clusters
|
|
||||||
|
|
||||||
def result2txt(self, data):
|
|
||||||
f = open("yolo_anchors.txt", 'w')
|
|
||||||
row = np.shape(data)[0]
|
|
||||||
for i in range(row):
|
|
||||||
if i == 0:
|
|
||||||
x_y = "%d,%d" % (data[i][0], data[i][1])
|
|
||||||
else:
|
|
||||||
x_y = ", %d,%d" % (data[i][0], data[i][1])
|
|
||||||
f.write(x_y)
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
def txt2boxes(self):
|
|
||||||
f = open(self.filename, 'r')
|
|
||||||
dataSet = []
|
|
||||||
for line in f:
|
|
||||||
infos = line.split(" ")
|
|
||||||
length = len(infos)
|
|
||||||
for i in range(1, length):
|
|
||||||
width = int(infos[i].split(",")[2]) - \
|
|
||||||
int(infos[i].split(",")[0])
|
|
||||||
height = int(infos[i].split(",")[3]) - \
|
|
||||||
int(infos[i].split(",")[1])
|
|
||||||
dataSet.append([width, height])
|
|
||||||
result = np.array(dataSet)
|
|
||||||
f.close()
|
|
||||||
return result
|
|
||||||
|
|
||||||
def txt2clusters(self):
|
|
||||||
all_boxes = self.txt2boxes()
|
|
||||||
result = self.kmeans(all_boxes, k=self.cluster_number)
|
|
||||||
result = result[np.lexsort(result.T[0, None])]
|
|
||||||
self.result2txt(result)
|
|
||||||
print("K anchors:\n {}".format(result))
|
|
||||||
print("Accuracy: {:.2f}%".format(
|
|
||||||
self.avg_iou(all_boxes, result) * 100))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
cluster_number = 9
|
|
||||||
filename = "2012_train.txt"
|
|
||||||
kmeans = YOLO_Kmeans(cluster_number, filename)
|
|
||||||
kmeans.txt2clusters()
|
|
Loading…
Reference in New Issue
Block a user