from PIL import Image import cv2 as cv from yolo import YOLO import ocr import numpy as np import math import base64 def grayscale(image): return cv.cvtColor(image, cv.COLOR_BGR2GRAY) def noise_removal(image): kernel = np.ones((1, 1), np.uint8) image = cv.dilate(image, kernel, iterations=1) kernel = np.ones((1, 1), np.uint8) image = cv.erode(image, kernel, iterations=1) image = cv.morphologyEx(image, cv.MORPH_CLOSE, kernel) image = cv.medianBlur(image, 3) return (image) def remove_borders(image): contours, heiarchy = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cntsSorted = sorted(contours, key=lambda x: cv.contourArea(x)) cnt = cntsSorted[-1] x, y, w, h = cv.boundingRect(cnt) crop = image[y:y + h, x:x + w] return (crop) def rotate_image(image, angle): image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0) result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR) return result def compute_skew(src_img): if len(src_img.shape) == 3: h, w, _ = src_img.shape elif len(src_img.shape) == 2: h, w = src_img.shape else: print('upsupported image type') img = cv.medianBlur(src_img, 3) edges = cv.Canny(img, threshold1=30, threshold2=100, apertureSize=3, L2gradient=True) lines = cv.HoughLinesP(edges, 1, math.pi / 180, 30, minLineLength=w / 4.0, maxLineGap=h / 4.0) angle = 0.0 cnt = 0 for x1, y1, x2, y2 in lines[0]: ang = np.arctan2(y2 - y1, x2 - x1) if math.fabs(ang) <= 30: # excluding extreme rotations angle += ang cnt += 1 if cnt == 0: return 0.0 return (angle / cnt) * 180 / math.pi def deskew(src_img): return rotate_image(src_img, compute_skew(src_img)) def detect_img(yolo, img_path, j): try: image = Image.open(img_path) except: print('Image open Error! Try again!') return None else: r_image, pred = yolo.detect_image(image) r_image.save('API/detected.png') processed_image = cv.imread(img_path) if not pred: return None i = 0 texts = [] for prediction in pred: x1 = prediction[1][0] x2 = prediction[2][0] y1 = prediction[1][1] y2 = prediction[2][1] w = abs(x1 - x2) h = abs(y1 - y2) img = processed_image[y1:y1 + h, x1:x1 + w] img = deskew(img) gray_image = grayscale(img) thresh, im_bw = cv.threshold(gray_image, 125, 150, cv.THRESH_BINARY) # the best = 120,150; 100, 150; 150, 210 no_noise = noise_removal(im_bw) no_borders = remove_borders(no_noise) cv.imwrite(f'API/img/img{j}{i}.png', no_borders) text = ocr.get_text_from_image(f'API/img/img{j}{i}.png') texts.append(text) if i > 0: processed_image = cv.imread(f'API/final/final{j}{i - 1}.png') res = cv.rectangle(processed_image, (x1, y1), (x1 + w, y1 + h), (0, 0, 255), 15) res = cv.putText(res, text, (x1, y1 - 20), cv.FONT_HERSHEY_SIMPLEX, 4, (0, 0, 255), 15, cv.LINE_AA) cv.imwrite(f'API/final/final{j}{i}.png', res) i += 1 with open(f"API/final/final{j}{i - 1}.png", "rb") as img_file: my_string = base64.b64encode(img_file.read()) return my_string, texts def detect_license_plate(model, img_path, i): str, texts = detect_img(model, img_path, i) if not str or not texts: return None, [None] return str, texts if __name__ == '__main__': output = detect_license_plate(model=YOLO(), img_path="/Users/sparafinski/Downloads/IMG_20230130_134147.jpg", i=0) print(output)