wko-projekt/yolo_video.py

174 lines
5.9 KiB
Python

from PIL import Image
import cv2 as cv
from yolo import YOLO
import ocr
import numpy as np
import math
import base64
def grayscale(image):
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
def noise_removal(image):
kernel = np.ones((1, 1), np.uint8)
image = cv.dilate(image, kernel, iterations=1)
kernel = np.ones((1, 1), np.uint8)
image = cv.erode(image, kernel, iterations=1)
image = cv.morphologyEx(image, cv.MORPH_CLOSE, kernel)
image = cv.medianBlur(image, 3)
return (image)
def remove_borders(image):
contours, heiarchy = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
cntsSorted = sorted(contours, key=lambda x:cv.contourArea(x))
cnt = cntsSorted[-1]
x, y, w, h = cv.boundingRect(cnt)
crop = image[y:y+h, x:x+w]
return (crop)
def rotate_image(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0)
result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR)
return result
def compute_skew(src_img):
if len(src_img.shape) == 3:
h, w, _ = src_img.shape
elif len(src_img.shape) == 2:
h, w = src_img.shape
else:
print('upsupported image type')
img = cv.medianBlur(src_img, 3)
edges = cv.Canny(img, threshold1 = 30, threshold2 = 100, apertureSize = 3, L2gradient = True)
lines = cv.HoughLinesP(edges, 1, math.pi/180, 30, minLineLength=w / 4.0, maxLineGap=h/4.0)
angle = 0.0
nlines = lines.size
#print(nlines)
cnt = 0
for x1, y1, x2, y2 in lines[0]:
ang = np.arctan2(y2 - y1, x2 - x1)
#print(ang)
if math.fabs(ang) <= 30: # excluding extreme rotations
angle += ang
cnt += 1
if cnt == 0:
return 0.0
return (angle / cnt)*180/math.pi
def deskew(src_img):
return rotate_image(src_img, compute_skew(src_img))
from keras import backend as K
def detect_img(yolo, img_path, j):
try:
# processed_image = cv.imread(img_path)
# final_image = cv.imread(img_path)
# processed_image = cv.resize(processed_image, (3024,3024))
# img_path = './img_to_detect.jpeg'
# cv.imwrite(img_path, processed_image)
image = Image.open(img_path)
except:
print('Image open Error! Try again!')
return None
else:
# Before prediction
# K.clear_session()
r_image, pred = yolo.detect_image(image)
# After prediction
# K.clear_session()
r_image.save('detected.png')
processed_image = cv.imread(img_path)
if not pred:
return None
i = 0
texts = []
## FIXME : better list mapping
for prediction in pred:
x1 = prediction[1][0]
x2 = prediction[2][0]
y1 = prediction[1][1]
y2 = prediction[2][1]
w = abs(x1 - x2)
h = abs(y1 - y2)
# print(pred)
# print(f'x1: {x1}, x2: {x2}, y1: {y1}, y2: {y2}, w: {w}, h: {h}')
img = processed_image[y1:y1 + h, x1:x1 + w]
img = deskew(img)
# gray_image = cv.cvtColor(robot_img, cv.COLOR_BGR2GRAY)
# # gray_image = cv.bilateralFilter(gray_image, 11, 17, 17)
# gaussian_blur = cv.GaussianBlur(gray_image, (9, 9), 0)
# edged = cv.Canny(gaussian_blur, 255, 255)
#
# image_file = './img0.png'
# img = cv.imread(image_file)
gray_image = grayscale(img)
thresh, im_bw = cv.threshold(gray_image, 125, 150, cv.THRESH_BINARY) #the best = 120,150; 100, 150; 150, 210
no_noise = noise_removal(im_bw)
no_borders = remove_borders(no_noise)
# blur = cv.GaussianBlur(gray_image, (3, 3), 0)
# thresh = cv.threshold(blur, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)[1]
#
# # Morph open to remove noise and invert image
# kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
# opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=1)
# no_borders = 255 - no_borders
cv.imwrite(f'img/img{j}{i}.png', no_borders)
text = ocr.get_text_from_image(f'img/img{j}{i}.png')
texts.append(text)
if i > 0:
processed_image = cv.imread(f'final/final{j}{i-1}.png')
res = cv.rectangle(processed_image, (x1, y1), (x1+w, y1+h), (0, 0, 255), 15)
res = cv.putText(res, text, (x1, y1 - 20), cv.FONT_HERSHEY_SIMPLEX, 4, (0, 0, 255), 15, cv.LINE_AA)
cv.imwrite(f'final/final{j}{i}.png', res)
my_string = 'ok'
i += 1
# with open("final.png", "rb") as img_file:
# my_string = base64.b64encode(img_file.read())
# print(my_string)
with open(f"final/final{j}{i-1}.png", "rb") as img_file:
my_string = base64.b64encode(img_file.read())
return my_string, texts
# text_file = open("base64.txt", "w")
# text_file.write(str(my_string))
# text_file.close()
# decoded data
# decoded_data = base64.b64decode((my_string))
# img_file = open('base64.png', 'wb')
# img_file.write(decoded_data)
# img_file.close()
def detect_license_plate(model, img_path, i):
str, texts = detect_img(model, img_path, i)
if not str or not texts:
return None, [None]
return str, texts
# yolo_model = YOLO()
# for i in range(18,100):
# image_path = rf'Images/New/IMG_25{i}.jpeg' #95; 3909, 2491
# detect_license_plate(model=yolo_model, img_path=image_path, i=i)
# image_path = rf'./Images/New/IMG_5016.jpeg' #95; 3909, 2491
# detect_license_plate(model=yolo_model, img_path=image_path, i=0)
# print(ocr.get_text_from_image(f'img0.png'))
# print(ocr.keras_ocr_func())
# print(ocr.tesseract_ocr())