1.8 MiB
1.8 MiB
LICENSE PLATE DETECTION
YOLO V3
!git clone https://github.com/roboflow-ai/keras-yolo3
!curl -L "https://app.roboflow.com/ds/hTj8Pr7g7U?key=q9kdROYojM" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip
!wget https://pjreddie.com/media/files/yolov3.weights
from keras.layers import ELU, PReLU, LeakyReLU
!python keras-yolo3/convert.py keras-yolo3/yolov3.cfg yolov3.weights model_data/yolo.h5
"""
Self-contained Python script to train YOLOv3 on your own dataset
"""
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data
def _main():
annotation_path = './train/_annotations.txt' # path to Roboflow data annotations
log_dir = './logs/000/' # where we're storing our logs
classes_path = './train/_classes.txt' # path to Roboflow class names
anchors_path = './model_data/yolo_anchors.txt'
class_names = get_classes(classes_path)
print("-------------------CLASS NAMES-------------------")
print(class_names)
print("-------------------CLASS NAMES-------------------")
num_classes = len(class_names)
anchors = get_anchors(anchors_path)
input_shape = (256,256) # multiple of 32, hw default = (416,416)
is_tiny_version = len(anchors)==6 # default setting
if is_tiny_version:
model = create_tiny_model(input_shape, anchors, num_classes,
freeze_body=2, weights_path='./model_data/tiny_yolo_weights.h5')
else:
model = create_model(input_shape, anchors, num_classes,
freeze_body=2, weights_path='./model_data/yolo.h5') # make sure you know what you freeze
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
val_split = 0.2 # set the size of the validation set
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
# Train with frozen layers first, to get a stable loss.
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
if True:
model.compile(optimizer=Adam(lr=1e-3), loss={
# use custom yolo_loss Lambda layer.
'yolo_loss': lambda y_true, y_pred: y_pred})
batch_size = 16
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=500,
initial_epoch=0,
callbacks=[logging, checkpoint])
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
# Unfreeze and continue training, to fine-tune.
# Train longer if the result is not good.
if True:
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
print('Unfreeze all of the layers.')
batch_size = 16 # note that more GPU memory is required after unfreezing the body
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=100,
initial_epoch=50,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
model.save_weights(log_dir + 'trained_weights_final.h5')
# Further training if needed.
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='./model_data/yolo.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='./model_data/tiny_yolo_weights.h5'):
'''create the training model, for Tiny YOLOv3'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
num_anchors//2, num_classes+5)) for l in range(2)]
model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze the darknet body or freeze all but 2 output layers.
num = (20, len(model_body.layers)-2)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
'''data generator for fit_generator'''
n = len(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0:
np.random.shuffle(annotation_lines)
image, box = get_random_data(annotation_lines[i], input_shape, random=True)
image_data.append(image)
box_data.append(box)
i = (i+1) % n
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
if __name__ == '__main__':
_main()
Prepare image to ocr
import cv2 as cv
from matplotlib import pyplot as plt
def grayscale(image):
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
def noise_removal(image):
import numpy as np
kernel = np.ones((1, 1), np.uint8)
image = cv.dilate(image, kernel, iterations=1)
kernel = np.ones((1, 1), np.uint8)
image = cv.erode(image, kernel, iterations=1)
image = cv.morphologyEx(image, cv.MORPH_CLOSE, kernel)
image = cv.medianBlur(image, 3)
return (image)
def thin_font(image):
import numpy as np
image = cv.bitwise_not(image)
kernel = np.ones((2,2),np.uint8)
image = cv.erode(image, kernel, iterations=1)
image = cv.bitwise_not(image)
return (image)
def thick_font(image):
import numpy as np
image = cv.bitwise_not(image)
kernel = np.ones((2,2),np.uint8)
image = cv.dilate(image, kernel, iterations=1)
image = cv.bitwise_not(image)
return (image)
def remove_borders(image):
contours, heiarchy = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
cntsSorted = sorted(contours, key=lambda x:cv.contourArea(x))
cnt = cntsSorted[-1]
x, y, w, h = cv.boundingRect(cnt)
crop = image[y:y+h, x:x+w]
return (crop)
image_file = './img/img00.png'
img = cv.imread(image_file)
gray_image = grayscale(img)
thresh, im_bw = cv.threshold(gray_image, 100, 150, cv.THRESH_BINARY)
no_noise = noise_removal(im_bw)
# eroded_image = thin_font(no_noise)
# dilated_image = thick_font(eroded_image)
no_borders = remove_borders(no_noise)
cv.imwrite("temp/no_borders.jpg", no_borders)
display('temp/no_borders.jpg')
def display(im_path):
dpi = 80
im_data = plt.imread(im_path)
height, width = im_data.shape[:2]
# What size does the figure need to be in inches to fit the image?
figsize = width / float(dpi), height / float(dpi)
# Create a figure of the right size with one axes that takes up the full figure
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1])
# Hide spines, ticks, etc.
ax.axis('off')
# Display the image.
ax.imshow(im_data, cmap='gray')
plt.show()
display(image_file)
inverted_image = cv.bitwise_not(img)
cv.imwrite("temp/inverted.jpg", inverted_image)
display("temp/inverted.jpg")
def grayscale(image):
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
gray_image = grayscale(img)
cv.imwrite("temp/gray.jpg", gray_image)
True
display("temp/gray.jpg")
thresh, im_bw = cv.threshold(gray_image, 170, 210, cv.THRESH_BINARY)
cv.imwrite("temp/bw_image.jpg", im_bw)
True
display("temp/bw_image.jpg")
def noise_removal(image):
import numpy as np
kernel = np.ones((1, 1), np.uint8)
image = cv.dilate(image, kernel, iterations=1)
kernel = np.ones((1, 1), np.uint8)
image = cv.erode(image, kernel, iterations=1)
image = cv.morphologyEx(image, cv.MORPH_CLOSE, kernel)
image = cv.medianBlur(image, 3)
return (image)
no_noise = noise_removal(im_bw)
cv.imwrite("temp/no_noise.jpg", no_noise)
True
display("temp/no_noise.jpg")
def thin_font(image):
import numpy as np
image = cv.bitwise_not(image)
kernel = np.ones((2,2),np.uint8)
image = cv.erode(image, kernel, iterations=1)
image = cv.bitwise_not(image)
return (image)
eroded_image = thin_font(no_noise)
cv.imwrite("temp/eroded_image.jpg", eroded_image)
display("temp/eroded_image.jpg")
def thick_font(image):
import numpy as np
image = cv.bitwise_not(image)
kernel = np.ones((2,2),np.uint8)
image = cv.dilate(image, kernel, iterations=1)
image = cv.bitwise_not(image)
return (image)
dilated_image = thick_font(no_noise)
cv.imwrite("temp/dilated_image.jpg", dilated_image)
display("temp/dilated_image.jpg")
def remove_borders(image):
contours, heiarchy = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
cntsSorted = sorted(contours, key=lambda x:cv.contourArea(x))
cnt = cntsSorted[-1]
x, y, w, h = cv.boundingRect(cnt)
crop = image[y:y+h, x:x+w]
return (crop)
no_borders = remove_borders(no_noise)
cv.imwrite("temp/no_borders.jpg", no_borders)
display('temp/no_borders.jpg')