221 lines
8.9 KiB
Python
221 lines
8.9 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Class definition of YOLO_v3 style detection model on image and video
|
|
"""
|
|
|
|
import colorsys
|
|
from timeit import default_timer as timer
|
|
import numpy as np
|
|
from keras import backend as K
|
|
from keras.models import load_model
|
|
from keras.layers import Input
|
|
from PIL import Image, ImageFont, ImageDraw
|
|
import os
|
|
import tensorflow.compat.v1.keras.backend as K
|
|
import tensorflow as tf
|
|
|
|
from yolo3.utils import letterbox_image
|
|
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
|
|
# from utils import letterbox_image
|
|
# from model import yolo_eval, yolo_body, tiny_yolo_body
|
|
|
|
tf.compat.v1.disable_eager_execution()
|
|
|
|
|
|
class YOLO(object):
|
|
_defaults = {
|
|
"model_path": 'API/model_data/trained_weights_final.h5',
|
|
"anchors_path": 'API/model_data/yolo_anchors.txt',
|
|
"classes_path": 'API/model_data/_classes.txt',
|
|
"score": 0.3,
|
|
"iou": 0.45,
|
|
"model_image_size": (256,256),#(128, 128),
|
|
"gpu_num": 1,
|
|
}
|
|
|
|
@classmethod
|
|
def get_defaults(cls, n):
|
|
if n in cls._defaults:
|
|
return cls._defaults[n]
|
|
else:
|
|
return "Unrecognized attribute name '" + n + "'"
|
|
|
|
def __init__(self, **kwargs):
|
|
self.__dict__.update(self._defaults) # set up default values
|
|
self.class_names = self._get_class()
|
|
self.anchors = self._get_anchors()
|
|
self.sess = K.get_session()
|
|
self.boxes, self.scores, self.classes = self.generate()
|
|
|
|
def _get_class(self):
|
|
classes_path = os.path.expanduser(self.classes_path)
|
|
with open(classes_path) as f:
|
|
class_names = f.readlines()
|
|
class_names = [c.strip() for c in class_names]
|
|
return class_names
|
|
|
|
def _get_anchors(self):
|
|
anchors_path = os.path.expanduser(self.anchors_path)
|
|
with open(anchors_path) as f:
|
|
anchors = f.readline()
|
|
anchors = [float(x) for x in anchors.split(',')]
|
|
return np.array(anchors).reshape(-1, 2)
|
|
|
|
def generate(self):
|
|
model_path = os.path.expanduser(self.model_path)
|
|
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
|
|
|
|
# Load model, or construct model and load weights.
|
|
num_anchors = len(self.anchors)
|
|
num_classes = len(self.class_names)
|
|
is_tiny_version = num_anchors == 6 # default setting
|
|
try:
|
|
self.yolo_model = load_model(model_path, compile=False)
|
|
except:
|
|
self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
|
|
if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
|
|
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
|
|
else:
|
|
assert self.yolo_model.layers[-1].output_shape[-1] == \
|
|
num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
|
|
'Mismatch between model and given anchor and class sizes'
|
|
|
|
print('{} model, anchors, and classes loaded.'.format(model_path))
|
|
|
|
# Generate colors for drawing bounding boxes.
|
|
hsv_tuples = [(x / len(self.class_names), 1., 1.)
|
|
for x in range(len(self.class_names))]
|
|
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
|
self.colors = list(
|
|
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
|
|
self.colors))
|
|
np.random.seed(10101) # Fixed seed for consistent colors across runs.
|
|
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
|
|
np.random.seed(None) # Reset seed to default.
|
|
|
|
# Generate output tensor targets for filtered bounding boxes.
|
|
self.input_image_shape = K.placeholder(shape=(2,))
|
|
if self.gpu_num >= 2:
|
|
self.yolo_model = tf.multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
|
|
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
|
|
len(self.class_names), self.input_image_shape,
|
|
score_threshold=self.score, iou_threshold=self.iou)
|
|
return boxes, scores, classes
|
|
|
|
def detect_image(self, image):
|
|
start = timer()
|
|
pred = []
|
|
|
|
if self.model_image_size != (None, None):
|
|
assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
|
|
assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
|
|
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
|
|
else:
|
|
new_image_size = (image.width - (image.width % 32),
|
|
image.height - (image.height % 32))
|
|
boxed_image = letterbox_image(image, new_image_size)
|
|
image_data = np.array(boxed_image, dtype='float32')
|
|
|
|
print(image_data.shape)
|
|
image_data /= 255.
|
|
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
|
|
|
|
out_boxes, out_scores, out_classes = self.sess.run(
|
|
[self.boxes, self.scores, self.classes],
|
|
feed_dict={
|
|
self.yolo_model.input: image_data,
|
|
self.input_image_shape: [image.size[1], image.size[0]],
|
|
K.learning_phase(): 0
|
|
})
|
|
|
|
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
|
|
|
|
font = ImageFont.truetype(font='API/font/FiraMono-Medium.otf',
|
|
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
|
|
thickness = (image.size[0] + image.size[1]) // 300
|
|
|
|
for i, c in reversed(list(enumerate(out_classes))):
|
|
predicted_class = self.class_names[c]
|
|
box = out_boxes[i]
|
|
score = out_scores[i]
|
|
|
|
# score > 0.7
|
|
if score > 0.5:
|
|
label = '{} {:.2f}'.format(predicted_class, score)
|
|
draw = ImageDraw.Draw(image)
|
|
label_size = draw.textsize(label, font)
|
|
|
|
top, left, bottom, right = box
|
|
top = max(0, np.floor(top + 0.5).astype('int32'))# - 10
|
|
left = max(0, np.floor(left + 0.5).astype('int32'))# - 10
|
|
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))# + 10
|
|
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))# + 10
|
|
# print('=' * 10)
|
|
# print(label, (left, top), (right, bottom))
|
|
pred.append([label, (left, top), (right, bottom)])
|
|
# print('=' * 10)
|
|
|
|
if top - label_size[1] >= 0:
|
|
text_origin = np.array([left, top - label_size[1]])
|
|
else:
|
|
text_origin = np.array([left, top + 1])
|
|
|
|
# My kingdom for a good redistributable image drawing library.
|
|
for i in range(thickness):
|
|
draw.rectangle(
|
|
[left + i, top + i, right - i, bottom - i],
|
|
outline=self.colors[c])
|
|
draw.rectangle(
|
|
[tuple(text_origin), tuple(text_origin + label_size)],
|
|
fill=self.colors[c])
|
|
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
|
|
del draw
|
|
|
|
end = timer()
|
|
print(end - start)
|
|
return image, pred
|
|
|
|
def close_session(self):
|
|
self.sess.close()
|
|
|
|
|
|
def detect_video(yolo, video_path, output_path=""):
|
|
import cv2
|
|
vid = cv2.VideoCapture(video_path)
|
|
if not vid.isOpened():
|
|
raise IOError("Couldn't open webcam or video")
|
|
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
|
|
video_fps = vid.get(cv2.CAP_PROP_FPS)
|
|
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
|
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
|
isOutput = True if output_path != "" else False
|
|
if isOutput:
|
|
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
|
|
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
|
|
accum_time = 0
|
|
curr_fps = 0
|
|
fps = "FPS: ??"
|
|
prev_time = timer()
|
|
while True:
|
|
return_value, frame = vid.read()
|
|
image = Image.fromarray(frame)
|
|
image = yolo.detect_image(image)
|
|
result = np.asarray(image)
|
|
curr_time = timer()
|
|
exec_time = curr_time - prev_time
|
|
prev_time = curr_time
|
|
accum_time = accum_time + exec_time
|
|
curr_fps = curr_fps + 1
|
|
if accum_time > 1:
|
|
accum_time = accum_time - 1
|
|
fps = "FPS: " + str(curr_fps)
|
|
curr_fps = 0
|
|
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
|
fontScale=0.50, color=(255, 0, 0), thickness=2)
|
|
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
|
|
cv2.imshow("result", result)
|
|
if isOutput:
|
|
out.write(result)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
yolo.close_session() |