1
0

Prześlij pliki do ''

This commit is contained in:
Joanna Kurczalska 2022-06-21 22:56:12 +02:00
parent 7196c1a211
commit 46fee9605e

196
run.py
View File

@ -1,91 +1,105 @@
import numpy as np
import pandas as pd
import torch
import csv
import lzma
import gensim.downloader
from nltk import word_tokenize
#print('wczytanie danych')
x_train = pd.read_table('train/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
y_train = pd.read_table('train/expected.tsv', sep='\t', header=None, quoting=3)
x_dev = pd.read_table('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
x_test = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
#print('inicjalizacja modelu')
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.l01 = torch.nn.Linear(300, 300)
self.l02 = torch.nn.Linear(300, 1)
def forward(self, x):
x = self.l01(x)
x = torch.relu(x)
x = self.l02(x)
x = torch.sigmoid(x)
return x
#print('przygotowanie danych')
x_train = x_train[0].str.lower()
y_train = y_train[0]
x_dev = x_dev[0].str.lower()
x_test = x_test[0].str.lower()
x_train = [word_tokenize(x) for x in x_train]
x_dev = [word_tokenize(x) for x in x_dev]
x_test = [word_tokenize(x) for x in x_test]
word2vec = gensim.downloader.load('word2vec-google-news-300')
x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train]
x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev]
x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test]
#print('trenowanie modelu')
model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(BATCH_SIZE):
model.train()
for i in range(0, y_train.shape[0], BATCH_SIZE):
X = x_train[i:i + BATCH_SIZE]
X = torch.tensor(X)
y = y_train[i:i + BATCH_SIZE]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
optimizer.zero_grad()
outputs = model(X.float())
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
#print('predykcja wynikow')
y_dev = []
y_test = []
model.eval()
with torch.no_grad():
for i in range(0, len(x_dev), BATCH_SIZE):
X = x_dev[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
prediction = (outputs > 0.5)
y_dev += prediction.tolist()
for i in range(0, len(x_test), BATCH_SIZE):
X = x_test[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
y = (outputs >= 0.5)
y_test += prediction.tolist()
# print('eksportowanie do plików')
y_dev = np.asarray(y_dev, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
y_dev.tofile('./dev-0/out.tsv', sep='\n')
y_test.tofile('./test-A/out.tsv', sep='\n')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
import pickle
import numpy as np
import pandas as pd
from word2vec import Word2Vec
class FFN(nn.Module):
def __init__(self, input_dim, output_dim, hidden1_size, hidden2_size, lr, epochs, batch_size):
super(FFN, self).__init__()
self.path = 'model1.pickle'
self.lr = lr
self.epochs = epochs
self.output_dim = output_dim
self.word2vec = Word2Vec()
self.word2vec.load()
self.batch_size = batch_size
self.input_dim = input_dim
self.fc1 = nn.Linear(batch_size, hidden1_size)
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.fc3 = nn.Linear(hidden2_size, hidden2_size)
self.fc4 = nn.Linear(hidden2_size, hidden2_size)
self.fc5 = nn.Linear(hidden2_size, batch_size)
def forward(self, data):
data = F.relu(self.fc1(data))
data = F.relu(self.fc2(data))
data = F.relu(self.fc3(data))
data = F.relu(self.fc4(data))
data = F.sigmoid(self.fc5(data))
return data
def serialize(self):
with open(self.path, 'wb') as file:
pickle.dump(self, file)
def load(self):
with open(self.path, 'rb') as file:
self = pickle.load(file)
def batch(self, iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
"""
data is a tuple of embedding vector and a label of 0/1
"""
def train(self, data, expected):
self.zero_grad()
criterion = torch.nn.BCELoss()
optimizer = optim.Adam(self.parameters(), lr=self.lr)
batch_size = self.batch_size
num_of_classes = self.output_dim
for epoch in range(self.epochs):
epoch_loss = 0.0
idx = 0
for i in range(0, int(len(data) / batch_size) * batch_size, batch_size):
inputs = data[i:i + batch_size]
labels = expected[i:i + batch_size]
optimizer.zero_grad()
outputs = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
target = torch.tensor(labels.values).double()
loss = criterion(outputs.view(batch_size), target.view(-1, ))
loss.backward()
optimizer.step()
epoch_loss += loss.item()
if (idx % 1000 == 0):
print('epoch: {}, idx: {}, loss: {}'.format(epoch, idx, epoch_loss / 1000))
epoch_loss = 0
idx += 1
self.serialize()
def test(self, data, expected, path):
correct = 0
incorrect = 0
total = 0
predictions = []
batch_size = self.batch_size
for i in range(0, int(len(data) / batch_size) * batch_size, batch_size):
inputs = data[i:i + batch_size]
labels = expected[i:i + batch_size]
predicted = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
score = [1 if x > 0.5 else 0 for x in predicted]
for x, y in zip(score, labels):
if (x == y):
correct += 1
else:
incorrect += 1
predictions.append(score)
print(correct)
print(incorrect)
print(correct / (incorrect + correct))
df = pd.DataFrame(np.asarray(predictions).reshape(int(len(data) / batch_size) * batch_size))
df.reset_index(drop=True, inplace=True)
df.to_csv(path, sep="\t", index=False)