This commit is contained in:
s478840 2022-05-24 23:52:59 +02:00
parent f674baffb9
commit 4cdbb2bee1
6 changed files with 17751 additions and 10327 deletions

File diff suppressed because it is too large Load Diff

5152
dev-0/out_bayes.tsv Normal file

File diff suppressed because it is too large Load Diff

105
run.py
View File

@ -1,32 +1,91 @@
import numpy as np
import pandas as pd
import torch
import csv
import lzma
import nltk
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim.downloader
from nltk import word_tokenize
#print('wczytanie danych')
x_train = pd.read_table('train/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
y_train = pd.read_table('train/expected.tsv', sep='\t', header=None, quoting=3)
x_dev = pd.read_table('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
x_test = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
#print('inicjalizacja modelu')
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.l01 = torch.nn.Linear(300, 300)
self.l02 = torch.nn.Linear(300, 1)
def forward(self, x):
x = self.l01(x)
x = torch.relu(x)
x = self.l02(x)
x = torch.sigmoid(x)
return x
with lzma.open("train/in.tsv.xz", "rt", encoding="utf-8") as train_file:
in_train = [x.strip().lower() for x in train_file.readlines()]
#print('przygotowanie danych')
with open("train/expected.tsv", "r", encoding="utf-8") as train_file:
out_train = [int(x.strip()) for x in train_file.readlines()]
x_train = x_train[0].str.lower()
y_train = y_train[0]
x_dev = x_dev[0].str.lower()
x_test = x_test[0].str.lower()
with lzma.open("dev-0/in.tsv.xz", "rt", encoding="utf-8") as dev_file:
in_dev = [x.strip().lower() for x in dev_file.readlines()]
x_train = [word_tokenize(x) for x in x_train]
x_dev = [word_tokenize(x) for x in x_dev]
x_test = [word_tokenize(x) for x in x_test]
with lzma.open("test-A/in.tsv.xz", "rt", encoding="utf-8") as test_file:
in_test = [x.strip().lower() for x in test_file.readlines()]
word2vec = gensim.downloader.load('word2vec-google-news-300')
x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train]
x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev]
x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test]
tfidf_vectorizer=TfidfVectorizer()
IN_train = tfidf_vectorizer.fit_transform(in_train)
classifier = MultinomialNB()
y_pred = classifier.fit(IN_train, out_train)
y_prediction = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("test-A/out.tsv", "w", encoding="utf-8") as test_out_file:
for single_pred in y_prediction:
test_out_file.writelines(f"{str(single_pred)}\n")
#print('trenowanie modelu')
model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
pred_dev = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("dev-0/out.tsv", "w", encoding="utf-8") as dev_out_file:
for single_pred in pred_dev:
dev_out_file.writelines(f"{str(single_pred)}\n")
for epoch in range(BATCH_SIZE):
model.train()
for i in range(0, y_train.shape[0], BATCH_SIZE):
X = x_train[i:i + BATCH_SIZE]
X = torch.tensor(X)
y = y_train[i:i + BATCH_SIZE]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
optimizer.zero_grad()
outputs = model(X.float())
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
#print('predykcja wynikow')
y_dev = []
y_test = []
model.eval()
with torch.no_grad():
for i in range(0, len(x_dev), BATCH_SIZE):
X = x_dev[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
prediction = (outputs > 0.5)
y_dev += prediction.tolist()
for i in range(0, len(x_test), BATCH_SIZE):
X = x_test[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
y = (outputs >= 0.5)
y_test += prediction.tolist()
# print('eksportowanie do plików')
y_dev = np.asarray(y_dev, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
y_dev.tofile('./dev-0/out.tsv', sep='\n')
y_test.tofile('./test-A/out.tsv', sep='\n')

31
run_bayes.py Normal file
View File

@ -0,0 +1,31 @@
import lzma
import nltk
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
with lzma.open("train/in.tsv.xz", "rt", encoding="utf-8") as train_file:
in_train = [x.strip().lower() for x in train_file.readlines()]
with open("train/expected.tsv", "r", encoding="utf-8") as train_file:
out_train = [int(x.strip()) for x in train_file.readlines()]
with lzma.open("dev-0/in.tsv.xz", "rt", encoding="utf-8") as dev_file:
in_dev = [x.strip().lower() for x in dev_file.readlines()]
with lzma.open("test-A/in.tsv.xz", "rt", encoding="utf-8") as test_file:
in_test = [x.strip().lower() for x in test_file.readlines()]
tfidf_vectorizer=TfidfVectorizer()
IN_train = tfidf_vectorizer.fit_transform(in_train)
classifier = MultinomialNB()
y_pred = classifier.fit(IN_train, out_train)
y_prediction = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("test-A/out.tsv", "w", encoding="utf-8") as test_out_file:
for single_pred in y_prediction:
test_out_file.writelines(f"{str(single_pred)}\n")
pred_dev = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("dev-0/out.tsv", "w", encoding="utf-8") as dev_out_file:
for single_pred in pred_dev:
dev_out_file.writelines(f"{str(single_pred)}\n")

File diff suppressed because it is too large Load Diff

5152
test-A/out_bayes.tsv Normal file

File diff suppressed because it is too large Load Diff