Compare commits

..

No commits in common. "master" and "master" have entirely different histories.

6 changed files with 0 additions and 20864 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

105
run.py
View File

@ -1,105 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
import pickle
import numpy as np
import pandas as pd
from word2vec import Word2Vec
class FFN(nn.Module):
def __init__(self, input_dim, output_dim, hidden1_size, hidden2_size, lr, epochs, batch_size):
super(FFN, self).__init__()
self.path = 'model1.pickle'
self.lr = lr
self.epochs = epochs
self.output_dim = output_dim
self.word2vec = Word2Vec()
self.word2vec.load()
self.batch_size = batch_size
self.input_dim = input_dim
self.fc1 = nn.Linear(batch_size, hidden1_size)
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.fc3 = nn.Linear(hidden2_size, hidden2_size)
self.fc4 = nn.Linear(hidden2_size, hidden2_size)
self.fc5 = nn.Linear(hidden2_size, batch_size)
def forward(self, data):
data = F.relu(self.fc1(data))
data = F.relu(self.fc2(data))
data = F.relu(self.fc3(data))
data = F.relu(self.fc4(data))
data = F.sigmoid(self.fc5(data))
return data
def serialize(self):
with open(self.path, 'wb') as file:
pickle.dump(self, file)
def load(self):
with open(self.path, 'rb') as file:
self = pickle.load(file)
def batch(self, iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
"""
data is a tuple of embedding vector and a label of 0/1
"""
def train(self, data, expected):
self.zero_grad()
criterion = torch.nn.BCELoss()
optimizer = optim.Adam(self.parameters(), lr=self.lr)
batch_size = self.batch_size
num_of_classes = self.output_dim
for epoch in range(self.epochs):
epoch_loss = 0.0
idx = 0
for i in range(0, int(len(data) / batch_size) * batch_size, batch_size):
inputs = data[i:i + batch_size]
labels = expected[i:i + batch_size]
optimizer.zero_grad()
outputs = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
target = torch.tensor(labels.values).double()
loss = criterion(outputs.view(batch_size), target.view(-1, ))
loss.backward()
optimizer.step()
epoch_loss += loss.item()
if (idx % 1000 == 0):
print('epoch: {}, idx: {}, loss: {}'.format(epoch, idx, epoch_loss / 1000))
epoch_loss = 0
idx += 1
self.serialize()
def test(self, data, expected, path):
correct = 0
incorrect = 0
total = 0
predictions = []
batch_size = self.batch_size
for i in range(0, int(len(data) / batch_size) * batch_size, batch_size):
inputs = data[i:i + batch_size]
labels = expected[i:i + batch_size]
predicted = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
score = [1 if x > 0.5 else 0 for x in predicted]
for x, y in zip(score, labels):
if (x == y):
correct += 1
else:
incorrect += 1
predictions.append(score)
print(correct)
print(incorrect)
print(correct / (incorrect + correct))
df = pd.DataFrame(np.asarray(predictions).reshape(int(len(data) / batch_size) * batch_size))
df.reset_index(drop=True, inplace=True)
df.to_csv(path, sep="\t", index=False)

View File

@ -1,31 +0,0 @@
import lzma
import nltk
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
with lzma.open("train/in.tsv.xz", "rt", encoding="utf-8") as train_file:
in_train = [x.strip().lower() for x in train_file.readlines()]
with open("train/expected.tsv", "r", encoding="utf-8") as train_file:
out_train = [int(x.strip()) for x in train_file.readlines()]
with lzma.open("dev-0/in.tsv.xz", "rt", encoding="utf-8") as dev_file:
in_dev = [x.strip().lower() for x in dev_file.readlines()]
with lzma.open("test-A/in.tsv.xz", "rt", encoding="utf-8") as test_file:
in_test = [x.strip().lower() for x in test_file.readlines()]
tfidf_vectorizer=TfidfVectorizer()
IN_train = tfidf_vectorizer.fit_transform(in_train)
classifier = MultinomialNB()
y_pred = classifier.fit(IN_train, out_train)
y_prediction = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("test-A/out.tsv", "w", encoding="utf-8") as test_out_file:
for single_pred in y_prediction:
test_out_file.writelines(f"{str(single_pred)}\n")
pred_dev = y_pred.predict(tfidf_vectorizer.transform(in_test))
with open("dev-0/out.tsv", "w", encoding="utf-8") as dev_out_file:
for single_pred in pred_dev:
dev_out_file.writelines(f"{str(single_pred)}\n")

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff