import numpy as np import pandas as pd import torch import csv import lzma import gensim.downloader from nltk import word_tokenize #print('wczytanie danych') x_train = pd.read_table('train/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3) y_train = pd.read_table('train/expected.tsv', sep='\t', header=None, quoting=3) x_dev = pd.read_table('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3) x_test = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3) #print('inicjalizacja modelu') class NeuralNetworkModel(torch.nn.Module): def __init__(self): super(NeuralNetworkModel, self).__init__() self.l01 = torch.nn.Linear(300, 300) self.l02 = torch.nn.Linear(300, 1) def forward(self, x): x = self.l01(x) x = torch.relu(x) x = self.l02(x) x = torch.sigmoid(x) return x #print('przygotowanie danych') x_train = x_train[0].str.lower() y_train = y_train[0] x_dev = x_dev[0].str.lower() x_test = x_test[0].str.lower() x_train = [word_tokenize(x) for x in x_train] x_dev = [word_tokenize(x) for x in x_dev] x_test = [word_tokenize(x) for x in x_test] word2vec = gensim.downloader.load('word2vec-google-news-300') x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train] x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev] x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test] #print('trenowanie modelu') model = NeuralNetworkModel() BATCH_SIZE = 5 criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(BATCH_SIZE): model.train() for i in range(0, y_train.shape[0], BATCH_SIZE): X = x_train[i:i + BATCH_SIZE] X = torch.tensor(X) y = y_train[i:i + BATCH_SIZE] y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1) optimizer.zero_grad() outputs = model(X.float()) loss = criterion(outputs, y) loss.backward() optimizer.step() #print('predykcja wynikow') y_dev = [] y_test = [] model.eval() with torch.no_grad(): for i in range(0, len(x_dev), BATCH_SIZE): X = x_dev[i:i + BATCH_SIZE] X = torch.tensor(X) outputs = model(X.float()) prediction = (outputs > 0.5) y_dev += prediction.tolist() for i in range(0, len(x_test), BATCH_SIZE): X = x_test[i:i + BATCH_SIZE] X = torch.tensor(X) outputs = model(X.float()) y = (outputs >= 0.5) y_test += prediction.tolist() # print('eksportowanie do plików') y_dev = np.asarray(y_dev, dtype=np.int32) y_test = np.asarray(y_test, dtype=np.int32) y_dev.tofile('./dev-0/out.tsv', sep='\n') y_test.tofile('./test-A/out.tsv', sep='\n')