en-ner-conll-2003/run.py
2022-06-12 17:47:03 +02:00

255 lines
7.6 KiB
Python

import lzma
from collections import Counter
import torch
import torch.nn as nn
import torchtext.vocab
from bidict import bidict
from string import punctuation
LABEL_TO_ID = bidict({
'O': 0,
'B-PER': 1,
'B-LOC': 2,
'I-PER': 3,
'B-MISC': 4,
'I-MISC': 5,
'I-LOC': 6,
'B-ORG': 7,
'I-ORG': 8
})
ID_TO_LABEL = LABEL_TO_ID.inverse
def read_data(path):
print(f"I am reading the data from {path}...")
if path[-2:] == 'xz':
data = {'text': [], 'tokens': []}
with lzma.open(path, 'rt', encoding='utf-8') as f:
for line in f:
line = line.strip().rsplit('\t')
tokens, text = line[0].split(), line[1].split()
if len(tokens) == len(text):
data['tokens'].append(tokens)
data['text'].append(text)
else:
with open(path, 'r', encoding='utf-8') as f:
data = [line.strip().split() for line in f]
print("Data loaded")
return data
def make_vocabulary(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
vocab = torchtext.vocab.vocab(
counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab.set_default_index(0)
return vocab
def tokenize_data(data, vocab):
return [
torch.tensor([vocab['<bos>']] + [vocab[token] for token in document] +
[vocab['<eos>']],
dtype=torch.long) for document in data
]
def encode_labels(data):
data_num = [[LABEL_TO_ID[label] for label in labels] for labels in data]
return [
torch.tensor([0] + document + [0], dtype=torch.long)
for document in data_num
]
def add_features(x_base, x_str):
word_features = [0, 0, 0, 0, 0, 0, 0, 0, 0]
if len(x_str) > 1 and len(x_str[1]) > 1:
word = x_str[1]
if word.isupper():
word_features[0] = 1
if word[0].isupper():
word_features[1] = 1
if word.isalnum():
word_features[2] = 1
if word.isnumeric():
word_features[3] = 1
if '-' in word:
word_features[4] = 1
if '/' in word:
word_features[5] = 1
for char in word:
if char in punctuation:
word_features[6] = 1
break
if len(word) > 6:
word_features[7] = 1
if len(word) < 3:
word_features[8] = 1
extra_features = torch.tensor(word_features)
x_features = torch.cat((x_base, extra_features), 0)
return x_features
class NERModel(nn.Module):
def __init__(self):
super(NERModel, self).__init__()
self.embedding = nn.Embedding(23627, 200)
self.linear = nn.Linear(2400, 9)
def forward(self, x):
x = self.embedding(x)
x = x.reshape(2400)
x = self.linear(x)
return x
def train_model(model,
data,
train_labels,
train_tokens_ids,
epochs,
save=False):
model.train()
for epoch in range(epochs):
loss_score = 0
acc_score = 0
prec_score = 0
selected_items = 0
recall_score = 0
relevant_items = 0
items_total = 0
for i in range(len(train_labels) - 1):
for j in range(1, len(train_labels[i]) - 1):
X_base = train_tokens_ids[i][j - 1:j + 2]
X_string = data['text'][i][j - 1:j + 2]
X_extra = add_features(X_base, X_string)
Y = train_labels[i][j:j + 1]
X = X_extra.to(device)
Y = Y.to(device)
Y_predictions = model(X)
pred_class = torch.argmax(Y_predictions)
y_item = Y.item()
acc_score += pred_class == Y
if pred_class != 0:
selected_items += 1
if pred_class == y_item:
prec_score += 1
if y_item != 0:
relevant_items += 1
if pred_class == y_item:
recall_score += 1
items_total += 1
optimizer.zero_grad()
loss = criterion(Y_predictions.unsqueeze(0), Y)
loss.backward()
optimizer.step()
loss_score += loss.item()
precision = prec_score / selected_items
recall = recall_score / relevant_items
f1_score = 2 * precision * recall / (
precision + recall) if precision and recall else 0
if i + 1 % 10 == 0:
print('Epoch: ', epoch)
print('Loss: ', loss_score / items_total)
print('Accuracy: ', acc_score / items_total)
print('F1-score: ', f1_score)
print('Finished epoch: ', epoch)
if save:
torch.save(model, 'model.pt')
def write_results(data, path):
with open(path, 'w') as f:
for line in data:
f.write(f'{line}\n')
print(f"Data written to the file {path}")
@torch.no_grad()
def predict(model, x_data, vocab, device):
tokens_ids = tokenize_data(x_data, vocab)
preds = []
# print('Getting into predicting loop')
for i in range(len(tokens_ids)):
labels = ''
# print('I will go with the sentence:\t', i)
for j in range(1, len(tokens_ids[i]) - 1):
x_base = tokens_ids[i][j - 1:j + 2]
x_strings = x_data[i][j - 1:j + 2]
x_features = add_features(x_base, x_strings) # .to(device)
# print('I will predict on data:\t', x_base, x_strings)
try:
pred = model(x_features)
label = ID_TO_LABEL[int(torch.argmax(pred))]
labels += f'{label} '
except Exception as ex:
print(f'Exception\t\t{ex}\t{x_strings}{x_features}')
preds.append(labels[:-1])
print('Done with the inference, now writing it into the file!\n')
lines = []
for line in preds:
prev_label = None
new_line = []
for label in line.split():
if label[0] == 'I':
if prev_label is None or prev_label == 'O':
label = label.replace('I', 'B')
else:
label = 'I' + prev_label[1:]
prev_label = label
new_line.append(label)
lines.append(' '.join(new_line))
return lines
if __name__ == '__main__':
# * Data loading
data = read_data('./train/train.tsv.xz')
vocab = make_vocabulary(data['text'])
train_tokens_ids = tokenize_data(data['text'], vocab)
train_labels = encode_labels(data['tokens'])
# * Model set-up
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('My device is ', device)
ner_model = NERModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(ner_model.parameters())
epochs = 3
# * Training
train_model(ner_model,
data,
train_labels,
train_tokens_ids,
epochs,
save=True)
# * Inference time!!!
print("Now, let's predict something!")
# new_model = torch.load(PATH)
ner_model.cpu()
ner_model.eval()
# * Inference on dev-0 data
dev_data = read_data('./dev-0/in.tsv')
write_results(predict(ner_model, dev_data, vocab, device),
'./dev-0/out.tsv')
# * Inference on test-A data
test_data = read_data('./test-A/in.tsv')
write_results(predict(ner_model, test_data, vocab, device),
'./test-A/out.tsv')