Merge branch 'develop'

This commit is contained in:
MatOgr 2022-04-29 13:00:20 +02:00
commit 40b02d2187
8 changed files with 220 additions and 56 deletions

View File

@ -15,11 +15,16 @@ ARG KAGGLE_KEY
# Copy scripts to the catalog
COPY ./scripts/. /
# COPY ./kaggle.json /root/.kaggle/kaggle.json
# * For local (Jenkins) processing
# COPY ./kaggle.json /root/.kaggle/kaggle.json
# Run the copied script
RUN chmod +x /load_data.sh
RUN /load_data.sh
RUN chmod +x /grab_avocado.py
RUN python3 /grab_avocado.py
RUN python3 /grab_avocado.py
# Run the model and train it
RUN chmod +x /model.py
RUN python3 /model.py

View File

@ -1,46 +0,0 @@
// pipeline {
// agent {
// dockerfile {
// additionalBuildArgs "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} -t s478841-create-dataset"
// }
// }
// stages {
// stage('Simple data stats') {
// steps {
// sh 'chmod u+x ./scripts/data_stats.sh'
// sh """
// docker run
// """
// sh './scripts/data_stats.sh'
// }
// }
// }
// post {
// always {
// archiveArtifacts artifacts: 'data/*',
// onlyIfSuccessful: true
// }
// }
// }
node {
checkout scm
stage('Load Docker image & data') {
def dataImage = docker.build('s478841-image', "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} .")
dataImage.inside('--name kaggload -v $WORKSPACE:/data -u root') {
// sh 'chmod u+x ./scripts/data_stats.sh'
// sh './scripts/data_stats.sh'
sh 'cp /app/data/* /data/data'
sh 'echo Data loaded'
}
}
stage('Archive arifacts') {
archiveArtifacts artifacts: '*data/avocado.data*', onlyIfSuccessful: true
}
}

View File

@ -0,0 +1,18 @@
node {
checkout scm
stage('Load Docker image & data') {
def dataImage = docker.build('s478841-image', "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} .")
dataImage.inside('--name kaggload -v $WORKSPACE:/data -u root') {
// sh 'chmod u+x ./scripts/data_stats.sh'
// sh './scripts/data_stats.sh'
sh 'cp /app/data/* /data/data'
sh 'echo Data loaded'
}
}
stage('Archive arifacts') {
archiveArtifacts artifacts: '*data/avocado.data*', onlyIfSuccessful: true
}
}

View File

@ -1,3 +1,5 @@
kaggle
pandas
sklearn
numpy
sklearn
torch

View File

@ -1,22 +1,59 @@
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
cols = list(pd.read_csv("data/avocado.csv", nrows=1))
# print("###\n", cols, "\n###")
avocados = pd.read_csv("data/avocado.csv", usecols=cols[1:])
avocados = pd.read_csv(
"data/avocado.csv").rename(columns={"Unnamed: 0": 'Week'})
avocados.describe(include="all")
float_cols = ['AveragePrice','Total Volume','4046','4225','4770','Total Bags','Small Bags','Large Bags','XLarge Bags']
# * Retrieve the target column
# y = avocados.AveragePrice
# avocados.drop(['AveragePrice'], axis=1, inplace=True)
avocados.loc[:, float_cols] = StandardScaler().fit_transform(avocados.loc[:, float_cols])
print(avocados.head())
# * columns containing numerical values for...
# ['Total Volume', '4046', '4225', '4770', 'Total Bags', 'Small Bags', 'Large Bags', 'XLarge Bags']
# fcols = (avocados.dtypes != 'object')
# float_cols = list(fcols[fcols].index)
# print("Numerical columns: ", float_cols)
# # * ...standarization
# avocados.loc[:, float_cols] = StandardScaler(
# ).fit_transform(avocados.loc[:, float_cols])
# * columns containing objects for...
obj_cols = (avocados.dtypes == 'object')
object_cols = list(obj_cols[obj_cols].index)
print("Object columns: ", object_cols)
# * ...OHE
enc = OneHotEncoder(handle_unknown='ignore', sparse=False)
# encoded_region = enc.fit_transform(
# avocados['region'].to_numpy().reshape(-1, 1)).toarray()
# encoded_region_frame = pd.DataFrame(
# encoded_region, columns=enc.get_feature_names_out())
# encoded_types = enc.fit_transform(
# avocados['type'].to_numpy().reshape(-1, 1)).toarray()
# encoded_types_frame = pd.DataFrame(
# encoded_types, columns=enc.get_feature_names_out())
ohe_df = pd.DataFrame(enc.fit_transform(avocados[object_cols]))
ohe_df.index = avocados.index
avocados = pd.concat([avocados.drop(object_cols, axis=1), ohe_df], axis=1)
all_cols = avocados.columns
print(all_cols)
# avocados = pd.concat([avocados, ohe_df], axis=1)
# * Time for normalization
mM = MinMaxScaler()
avocados_normed = pd.DataFrame(mM.fit_transform(avocados.values), columns=all_cols)
print(avocados_normed.head())
# avocados.loc[:, float_cols] = MinMaxScaler().fit_transform(avocados.loc[:, float_cols])
# print(avocados.head())
avocado_train, avocado_test = train_test_split(avocados, test_size=2000, random_state=3337)
avocado_train, avocado_valid = train_test_split(avocado_train, test_size=2249, random_state=3337)
avocado_train, avocado_test = train_test_split(
avocados_normed, test_size=2000, random_state=3337)
avocado_train, avocado_valid = train_test_split(
avocado_train, test_size=2249, random_state=3337)
print("Train\n", avocado_train.describe(include="all"), "\n")
print("Valid\n", avocado_valid.describe(include="all"), "\n")

148
scripts/model.py Normal file
View File

@ -0,0 +1,148 @@
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
import torch
from torch import nn
from torch.utils import data as t_u_data
print(
f"PyTorch working?\t\t{torch.__version__}\nLooks like potatoe...but seems to be fine")
# * Customized Dataset class (base provided by PyTorch)
class AvocadoDataset(t_u_data.Dataset):
def __init__(self, path: str, target: str = 'AveragePrice'):
data = pd.read_csv(path)
self.y = data.values[:, 1].astype('float32')
self.y = self.y.reshape((len(self.y), 1))
self.x_shape = data.drop([target], axis=1).shape
self.x_data = data.drop(
[target], axis=1).values.astype('float32')
# print("Data shape is: ", self.x_data.shape)
def __len__(self):
return len(self.x_data)
def __getitem__(self, idx):
return [self.x_data[idx], self.y[idx]]
def get_shape(self):
return self.x_shape
def get_splits(self, n_test=0.33):
test_size = round(n_test * len(self.x_data))
train_size = len(self.x_data) - test_size
return t_u_data.random_split(self, [train_size, test_size])
class AvocadoRegressor(nn.Module):
def __init__(self, input_dim):
super(AvocadoRegressor, self).__init__()
self.hidden1 = nn.Linear(input_dim, 32)
nn.init.xavier_uniform_(self.hidden1.weight)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(32, 8)
nn.init.xavier_uniform_(self.hidden2.weight)
self.act2 = nn.ReLU()
self.hidden3 = nn.Linear(8, 1)
nn.init.xavier_uniform_(self.hidden3.weight)
def forward(self, x):
x = self.hidden1(x)
x = self.act1(x)
x = self.hidden2(x)
x = self.act2(x)
x = self.hidden3(x)
return x
def prepare_data(path):
dataset = AvocadoDataset(path)
train, test = dataset.get_splits()
train_dl = t_u_data.DataLoader(train, batch_size=32, shuffle=True)
test_dl = t_u_data.DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
def train_model(train_dl, model, epochs=100):
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
to_compare = None
for epoch in range(epochs):
if epoch == 0:
print(f"Epoch: {epoch+1}")
if epoch > 0 and (epoch+1) % 10 == 0:
print(
f"Epoch: {epoch+1}\tloss\t\t{mean_squared_error(to_compare[1].detach().numpy(), to_compare[0].detach().numpy())}")
for i, (inputs, targets) in enumerate(train_dl):
optimizer.zero_grad()
yhat = model(inputs)
# * For loss value inspection
to_compare = (yhat, targets)
loss = criterion(yhat, targets)
loss.backward()
optimizer.step()
def evaluate_model(test_dl, model):
predictions, actuals = list(), list()
for _, (inputs, targets) in enumerate(test_dl):
yhat = model(inputs)
# * retrieve numpy array
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
# * store predictions
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = np.vstack(predictions), np.vstack(actuals)
# * return MSE value
return mean_squared_error(actuals, predictions)
def predict(row, model):
row = row[0].flatten()
yhat = model(row)
yhat = yhat.detach().numpy()
return yhat
if __name__ == '__main__':
# * Paths to data
avocado_train = './data/avocado.data.train'
avocado_valid = './data/avocado.data.valid'
avocado_test = './data/avocado.data.test'
# * Data preparation
train_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_train), batch_size=32, shuffle=True)
validate_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_valid), batch_size=128, shuffle=True)
test_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_test), batch_size=1, shuffle=False)
print(f"""
Train set size: {len(train_dl.dataset)},
Validate set size: {len(validate_dl.dataset)}
Test set size: {len(test_dl.dataset)}
""")
# * Model definition
# ! 66 - in case only regions and type are used (among all the categorical vals)
model = AvocadoRegressor(235)
# * Train model
print("Let's start the training, mate!")
train_model(train_dl, model)
# * Evaluate model
mse = evaluate_model(validate_dl, model)
print(f"\nEvaluation\t\tMSE: {mse}, RMSE: {np.sqrt(mse)}")
# * Prediction
predictions = [(predict(row, model)[0], row[1].item()) for row in test_dl]
preds_df = pd.DataFrame(predictions, columns=["Prediction", "Target"])
print("\nNow predictions - hey ho, let's go!\n", preds_df.head())
preds_df.to_csv("./data/predictions.csv", index=False)