Jenkins training script

This commit is contained in:
MatOgr 2022-05-02 10:52:18 +02:00
parent 2377076904
commit d2a813c9c6
3 changed files with 88 additions and 7 deletions

View File

@ -24,7 +24,3 @@ RUN /load_data.sh
RUN chmod +x /grab_avocado.py RUN chmod +x /grab_avocado.py
RUN python3 /grab_avocado.py RUN python3 /grab_avocado.py
# Run the model and train it
RUN chmod +x /model.py
RUN python3 /model.py

View File

@ -0,0 +1,61 @@
pipeline {
agent {
dockerfile true
}
parameters {
string(
defaultValue: '5',
description: 'epochs number',
name: 'epochs'
),
string {
defaultValue: '--save',
description: 'save model after training',
name: 'save_model'
}
}
stages {
stage('Checkout') {
steps {
checkout([$class: 'GitSCM', branches: [[name: '*/develop']], extensions: [], userRemoteConfigs: [
[url: 'https://git.wmi.amu.edu.pl/s478841/ium_478841.git']]])
}
}
stage('Copy Artifacts') {
steps {
copyArtifacts filter: '*.csv', fingerprintArtifacts: true, projectName: 's478841-create-dataset', selector: lastSuccessful()
}
}
stage('Model training') {
steps {
sh "chmod +x -R ${env.WORKSPACE}"
sh 'python model.py -e $epochs $save_model'
}
}
stage('Archive artifacts') {
steps {
archiveArtifacts artifacts: '*data/predictions.csv', onlyIfSuccessful: true
archiveArtifacts artifacts: '*data/model_scripted*', onlyIfSuccessful: true
}
}
}
post {
success {
emailtext body: 'SUCCESS', subject: "s478841-training", to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailtext body: 'FAILURE', subject: "s478841-training", to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailtext body: 'UNSTABLE', subject: "s478841-training", to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailtext body: 'CHANGED', subject: "s478841-training", to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

View File

@ -1,3 +1,5 @@
import argparse
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error
@ -111,6 +113,21 @@ def predict(row, model):
if __name__ == '__main__': if __name__ == '__main__':
# * Model parameters
parser = argparse.ArgumentParser(description="Script performing logistic regression model training",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"-e", "--epochs", default=100, help="Number of epochs the model will be trained for")
parser.add_argument("--save", action="store_true",
help="Save trained model to file 'trained_model.h5'")
args = vars(parser.parse_args())
epochs = args['epochs']
save_model = args['save']
print(
f"Your model will be trained for {epochs} epochs. Trained model will {'not ' if save_model else ''}be saved.")
# * Paths to data # * Paths to data
avocado_train = './data/avocado.data.train' avocado_train = './data/avocado.data.train'
avocado_valid = './data/avocado.data.valid' avocado_valid = './data/avocado.data.valid'
@ -135,7 +152,7 @@ if __name__ == '__main__':
# * Train model # * Train model
print("Let's start the training, mate!") print("Let's start the training, mate!")
train_model(train_dl, model) train_model(train_dl, model, int(epochs))
# * Evaluate model # * Evaluate model
mse = evaluate_model(validate_dl, model) mse = evaluate_model(validate_dl, model)
@ -144,5 +161,12 @@ if __name__ == '__main__':
# * Prediction # * Prediction
predictions = [(predict(row, model)[0], row[1].item()) for row in test_dl] predictions = [(predict(row, model)[0], row[1].item()) for row in test_dl]
preds_df = pd.DataFrame(predictions, columns=["Prediction", "Target"]) preds_df = pd.DataFrame(predictions, columns=["Prediction", "Target"])
print("\nNow predictions - hey ho, let's go!\n", preds_df.head()) print("\nNow predictions - hey ho, let's go!\n",
preds_df.head(), "\n\n...let's save them\ndum...\ndum...\ndum dum dum...\n\tDUM\n")
preds_df.to_csv("./data/predictions.csv", index=False) preds_df.to_csv("./data/predictions.csv", index=False)
# * Save the trained model
if save_model:
print("Your model has been saved - have a nice day!")
scripted_model = torch.jit.script(model)
scripted_model.save('./data/model_scripted.pt')