import argparse import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error import torch from torch import nn from torch.utils import data as t_u_data print( f"PyTorch working?\t →\t{torch.__version__}\nLooks like potatoe...but seems to be fine") # * Customized Dataset class (base provided by PyTorch) class AvocadoDataset(t_u_data.Dataset): def __init__(self, path: str, target: str = 'AveragePrice'): data = pd.read_csv(path) self.y = data.values[:, 1].astype('float32') self.y = self.y.reshape((len(self.y), 1)) self.x_shape = data.drop([target], axis=1).shape self.x_data = data.drop( [target], axis=1).values.astype('float32') # print("Data shape is: ", self.x_data.shape) def __len__(self): return len(self.x_data) def __getitem__(self, idx): return [self.x_data[idx], self.y[idx]] def get_shape(self): return self.x_shape def get_splits(self, n_test=0.33): test_size = round(n_test * len(self.x_data)) train_size = len(self.x_data) - test_size return t_u_data.random_split(self, [train_size, test_size]) class AvocadoRegressor(nn.Module): def __init__(self, input_dim): super(AvocadoRegressor, self).__init__() self.hidden1 = nn.Linear(input_dim, 32) nn.init.xavier_uniform_(self.hidden1.weight) self.act1 = nn.ReLU() self.hidden2 = nn.Linear(32, 8) nn.init.xavier_uniform_(self.hidden2.weight) self.act2 = nn.ReLU() self.hidden3 = nn.Linear(8, 1) nn.init.xavier_uniform_(self.hidden3.weight) def forward(self, x): x = self.hidden1(x) x = self.act1(x) x = self.hidden2(x) x = self.act2(x) x = self.hidden3(x) return x def prepare_data(path): dataset = AvocadoDataset(path) train, test = dataset.get_splits() train_dl = t_u_data.DataLoader(train, batch_size=32, shuffle=True) test_dl = t_u_data.DataLoader(test, batch_size=1024, shuffle=False) return train_dl, test_dl def train_model(train_dl, model, epochs=100): criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) to_compare = None for epoch in range(epochs): if epoch == 0: print(f"Epoch: {epoch+1}") if epoch > 0 and (epoch+1) % 10 == 0: print( f"Epoch: {epoch+1}\tloss\t→\t{mean_squared_error(to_compare[1].detach().numpy(), to_compare[0].detach().numpy())}") for i, (inputs, targets) in enumerate(train_dl): optimizer.zero_grad() yhat = model(inputs) # * For loss value inspection to_compare = (yhat, targets) loss = criterion(yhat, targets) loss.backward() optimizer.step() def evaluate_model(test_dl, model): predictions, actuals = list(), list() for _, (inputs, targets) in enumerate(test_dl): yhat = model(inputs) # * retrieve numpy array yhat = yhat.detach().numpy() actual = targets.numpy() actual = actual.reshape((len(actual), 1)) # * store predictions predictions.append(yhat) actuals.append(actual) predictions, actuals = np.vstack(predictions), np.vstack(actuals) # * return MSE value mse = mean_squared_error(actuals, predictions) rmse = mean_squared_error(actuals, predictions, squared=False) mae = mean_absolute_error(actuals, predictions) return mse, rmse, mae def predict(row, model): row = row[0].flatten() yhat = model(row) yhat = yhat.detach().numpy() return yhat if __name__ == '__main__': # * Model parameters parser = argparse.ArgumentParser(description="Script performing logistic regression model training", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "-e", "--epochs", default=100, help="Number of epochs the model will be trained for") parser.add_argument("--save", action="store_true", help="Save trained model to file 'trained_model.h5'") args = vars(parser.parse_args()) epochs = args['epochs'] save_model = args['save'] print( f"Your model will be trained for {epochs} epochs. Trained model will {'not ' if save_model else ''}be saved.") # * Paths to data avocado_train = './data/avocado.data.train' avocado_valid = './data/avocado.data.valid' avocado_test = './data/avocado.data.test' # * Data preparation train_dl = t_u_data.DataLoader(AvocadoDataset( avocado_train), batch_size=32, shuffle=True) validate_dl = t_u_data.DataLoader(AvocadoDataset( avocado_valid), batch_size=128, shuffle=True) test_dl = t_u_data.DataLoader(AvocadoDataset( avocado_test), batch_size=1, shuffle=False) print(f""" Train set size: {len(train_dl.dataset)}, Validate set size: {len(validate_dl.dataset)} Test set size: {len(test_dl.dataset)} """) # * Model definition # ! 66 - in case only regions and type are used (among all the categorical vals) model = AvocadoRegressor(235) # * Train model print("Let's start the training, mate!") train_model(train_dl, model, int(epochs)) # * Evaluate model mse, rmse, mae = evaluate_model(validate_dl, model) print(f"\nEvaluation\t→\tMSE: {mse}, RMSE: {rmse}, MAE: {mae}") # * Prediction predictions = [(predict(row, model)[0], row[1].item()) for row in test_dl] preds_df = pd.DataFrame(predictions, columns=["Prediction", "Target"]) print("\nNow predictions - hey ho, let's go!\n", preds_df.head(), "\n\n...let's save them\ndum...\ndum...\ndum dum dum...\n\tDUM\n") preds_df.to_csv("./data/predictions.csv", index=False) # * Save the trained model if save_model: print("Your model has been saved - have a nice day!") scripted_model = torch.jit.script(model) scripted_model.save('./data/model_scripted.pt')