import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler cols = list(pd.read_csv("avocado.csv", nrows=1)) # print("###\n", cols, "\n###") avocados = pd.read_csv("avocado.csv", usecols=cols[1:]) avocados.describe(include="all") float_cols = ['AveragePrice','Total Volume','4046','4225','4770','Total Bags','Small Bags','Large Bags','XLarge Bags'] avocados.loc[:, float_cols] = StandardScaler().fit_transform(avocados.loc[:, float_cols]) print(avocados.head()) # avocados.loc[:, float_cols] = MinMaxScaler().fit_transform(avocados.loc[:, float_cols]) # print(avocados.head()) avocado_train, avocado_test = train_test_split(avocados, test_size=2000, random_state=3337) avocado_train, avocado_valid = train_test_split(avocado_train, test_size=2249, random_state=3337) print("Train\n", avocado_train.describe(include="all"), "\n") print("Valid\n", avocado_valid.describe(include="all"), "\n") print("Test\n", avocado_test.describe(include="all")) avocado_train.to_csv("avocado.data.train", index=False) avocado_valid.to_csv("avocado.data.valid", index=False) avocado_test.to_csv("avocado.data.test", index=False)