ium_478841/scripts/model.py
2022-04-24 13:32:00 +02:00

149 lines
4.8 KiB
Python

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
import torch
from torch import nn
from torch.utils import data as t_u_data
print(
f"PyTorch working?\t\t{torch.__version__}\nLooks like potatoe...but seems to be fine")
# * Customized Dataset class (base provided by PyTorch)
class AvocadoDataset(t_u_data.Dataset):
def __init__(self, path: str, target: str = 'AveragePrice'):
data = pd.read_csv(path)
self.y = data.values[:, 1].astype('float32')
self.y = self.y.reshape((len(self.y), 1))
self.x_shape = data.drop([target], axis=1).shape
self.x_data = data.drop(
[target], axis=1).values.astype('float32')
# print("Data shape is: ", self.x_data.shape)
def __len__(self):
return len(self.x_data)
def __getitem__(self, idx):
return [self.x_data[idx], self.y[idx]]
def get_shape(self):
return self.x_shape
def get_splits(self, n_test=0.33):
test_size = round(n_test * len(self.x_data))
train_size = len(self.x_data) - test_size
return t_u_data.random_split(self, [train_size, test_size])
class AvocadoRegressor(nn.Module):
def __init__(self, input_dim):
super(AvocadoRegressor, self).__init__()
self.hidden1 = nn.Linear(input_dim, 32)
nn.init.xavier_uniform_(self.hidden1.weight)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(32, 8)
nn.init.xavier_uniform_(self.hidden2.weight)
self.act2 = nn.ReLU()
self.hidden3 = nn.Linear(8, 1)
nn.init.xavier_uniform_(self.hidden3.weight)
def forward(self, x):
x = self.hidden1(x)
x = self.act1(x)
x = self.hidden2(x)
x = self.act2(x)
x = self.hidden3(x)
return x
def prepare_data(path):
dataset = AvocadoDataset(path)
train, test = dataset.get_splits()
train_dl = t_u_data.DataLoader(train, batch_size=32, shuffle=True)
test_dl = t_u_data.DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
def train_model(train_dl, model, epochs=100):
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
to_compare = None
for epoch in range(epochs):
if epoch == 0:
print(f"Epoch: {epoch+1}")
if epoch > 0 and (epoch+1) % 10 == 0:
print(
f"Epoch: {epoch+1}\tloss\t\t{mean_squared_error(to_compare[1].detach().numpy(), to_compare[0].detach().numpy())}")
for i, (inputs, targets) in enumerate(train_dl):
optimizer.zero_grad()
yhat = model(inputs)
# * For loss value inspection
to_compare = (yhat, targets)
loss = criterion(yhat, targets)
loss.backward()
optimizer.step()
def evaluate_model(test_dl, model):
predictions, actuals = list(), list()
for _, (inputs, targets) in enumerate(test_dl):
yhat = model(inputs)
# * retrieve numpy array
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
# * store predictions
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = np.vstack(predictions), np.vstack(actuals)
# * return MSE value
return mean_squared_error(actuals, predictions)
def predict(row, model):
row = row[0].flatten()
yhat = model(row)
yhat = yhat.detach().numpy()
return yhat
if __name__ == '__main__':
# * Paths to data
avocado_train = './data/avocado.data.train'
avocado_valid = './data/avocado.data.valid'
avocado_test = './data/avocado.data.test'
# * Data preparation
train_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_train), batch_size=32, shuffle=True)
validate_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_valid), batch_size=128, shuffle=True)
test_dl = t_u_data.DataLoader(AvocadoDataset(
avocado_test), batch_size=1, shuffle=False)
print(f"""
Train set size: {len(train_dl.dataset)},
Validate set size: {len(validate_dl.dataset)}
Test set size: {len(test_dl.dataset)}
""")
# * Model definition
# ! 66 - in case only regions and type are used (among all the categorical vals)
model = AvocadoRegressor(235)
# * Train model
print("Let's start the training, mate!")
train_model(train_dl, model)
# * Evaluate model
mse = evaluate_model(validate_dl, model)
print(f"\nEvaluation\t\tMSE: {mse}, RMSE: {np.sqrt(mse)}")
# * Prediction
predictions = [(predict(row, model)[0], row[1].item()) for row in test_dl]
preds_df = pd.DataFrame(predictions, columns=["Prediction", "Target"])
print("\nNow predictions - hey ho, let's go!\n", preds_df.head())
preds_df.to_csv("./data/predictions.csv", index=False)