First solution
This commit is contained in:
parent
ecfafbf86c
commit
bb8c5fd530
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
158
main.py
Normal file
158
main.py
Normal file
@ -0,0 +1,158 @@
|
||||
from gensim import downloader
|
||||
from gensim.utils import simple_preprocess
|
||||
import gensim
|
||||
import numpy as np
|
||||
import torch
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# Przeklejony kod z jupyter notebook'a
|
||||
with open("in.tsv", "r") as train_file:
|
||||
X_train = train_file.readlines()
|
||||
X_train = [gensim.utils.simple_preprocess(x) for x in X_train]
|
||||
|
||||
y_train = pd.read_csv("expected.tsv", header=None)
|
||||
y_train = y_train.values
|
||||
|
||||
|
||||
with open("dev_in.tsv", "r") as train_file:
|
||||
X_test = train_file.readlines()
|
||||
X_test = [gensim.utils.simple_preprocess(x) for x in X_test]
|
||||
|
||||
y_test = pd.read_csv("dev_expected.tsv", header=None)
|
||||
y_test = y_test.values
|
||||
|
||||
|
||||
w2v_model = gensim.models.Word2Vec(X_train, vector_size=100, window=5, min_count=2)
|
||||
words = set(w2v_model.wv.index_to_key)
|
||||
X_train_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_train])
|
||||
X_test_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_test])
|
||||
|
||||
X_train_vector_average = []
|
||||
for vector in X_train_vector:
|
||||
if vector.size:
|
||||
X_train_vector_average.append(vector.mean(axis=0))
|
||||
else:
|
||||
X_train_vector_average.append(np.zeros(100, dtype=float))
|
||||
|
||||
X_test_vector_average = []
|
||||
for vector in X_test_vector:
|
||||
if vector.size:
|
||||
X_test_vector_average.append(vector.mean(axis=0))
|
||||
else:
|
||||
X_test_vector_average.append(np.zeros(100, dtype=float))
|
||||
|
||||
X_train_vector_average = np.array(X_train_vector_average)
|
||||
X_test_vector_average = np.array(X_test_vector_average)
|
||||
|
||||
|
||||
FEATURES = 100
|
||||
|
||||
|
||||
class NeuralNetworkModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(NeuralNetworkModel, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(FEATURES,500)
|
||||
self.fc2 = torch.nn.Linear(500,1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
nn_model = NeuralNetworkModel()
|
||||
BATCH_SIZE = 32
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
||||
|
||||
|
||||
def get_loss_acc(model, X_dataset, Y_dataset):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
model.eval()
|
||||
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
|
||||
X = X_dataset[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X.astype(np.float32))
|
||||
Y = Y_dataset[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
loss = criterion(Y_predictions, Y)
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
return (loss_score / items_total), (acc_score / items_total)
|
||||
|
||||
|
||||
for epoch in range(50):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
nn_model.train()
|
||||
for i in range(0, y_train.shape[0] - 42, BATCH_SIZE):
|
||||
X = X_train_vector_average[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X.astype(np.float32))
|
||||
Y = y_train[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
Y_predictions = nn_model(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions, Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
|
||||
display(epoch)
|
||||
display(get_loss_acc(nn_model, X_train_vector_average, y_train))
|
||||
|
||||
|
||||
with open("test_in.tsv", "r") as real_test_file:
|
||||
X_real_test = real_test_file.readlines()
|
||||
X_real_test = [gensim.utils.simple_preprocess(x) for x in X_real_test]
|
||||
X_real_test_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_real_test])
|
||||
|
||||
X_real_test_vector_average = []
|
||||
for vector in X_real_test_vector:
|
||||
if vector.size:
|
||||
X_real_test_vector_average.append(vector.mean(axis=0))
|
||||
else:
|
||||
X_real_test_vector_average.append(np.zeros(100, dtype=float))
|
||||
|
||||
X_real_test_vector_average = np.array(X_real_test_vector_average)
|
||||
|
||||
dev_output = []
|
||||
test_output = []
|
||||
|
||||
nn_model.eval()
|
||||
for i in range(len(X_test_vector_average)):
|
||||
X = X_test_vector_average[i]
|
||||
X = torch.tensor(X.astype(np.float32))
|
||||
Y_predictions = nn_model(X)
|
||||
if Y_predictions[0] > 0.5:
|
||||
dev_output.append("1\n")
|
||||
else:
|
||||
dev_output.append("0\n")
|
||||
|
||||
for i in range(len(X_real_test_vector_average)):
|
||||
X = X_real_test_vector_average[i]
|
||||
X = torch.tensor(X.astype(np.float32))
|
||||
Y_predictions = nn_model(X)
|
||||
if Y_predictions[0] > 0.5:
|
||||
test_output.append("1\n")
|
||||
else:
|
||||
test_output.append("0\n")
|
||||
|
||||
with open("dev_out.tsv", "w") as dev_file:
|
||||
dev_file.writelines(dev_output)
|
||||
|
||||
with open("test_out.tsv", "w") as test_file:
|
||||
test_file.writelines(test_output)
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user