95 lines
2.1 KiB
Plaintext
95 lines
2.1 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!pip install kaggle\n",
|
||
|
"!pip install pandas\n",
|
||
|
"!pip install seaborn\n",
|
||
|
"!pip install torch"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# 1 Pobranie zbioru\n",
|
||
|
"!kaggle datasets download -d joniarroba/noshowappointments"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!unzip -o noshowappointments.zip"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"no_shows=pd.read_csv('KaggleV2-May-2016.csv')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Wyczyszczenie zbioru\n",
|
||
|
"# Usunięcie negatywnego wieku\n",
|
||
|
"no_shows = no_shows.drop(no_shows[no_shows[\"Age\"] < 0].index)\n",
|
||
|
"\n",
|
||
|
"# Usunięcie niewiadomego wieku (zależy od zastosowania)\n",
|
||
|
"# no_shows = no_shows.drop(no_shows[no_shows[\"Age\"] == 0].index)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Normalizacja danych\n",
|
||
|
"\n",
|
||
|
"# Usunięcie kolumn PatientId oraz AppointmentID\n",
|
||
|
"no_shows.drop([\"PatientId\", \"AppointmentID\"], inplace=True, axis=1)\n",
|
||
|
"\n",
|
||
|
"# Zmiena wartości kolumny No-show z Yes/No na wartość boolowską\n",
|
||
|
"no_shows[\"No-show\"] = no_shows[\"No-show\"].map({'Yes': 1, 'No': 0})\n",
|
||
|
"\n",
|
||
|
"# Normalizacja kolumny Age\n",
|
||
|
"no_shows[\"Age\"]=(no_shows[\"Age\"]-no_shows[\"Age\"].min())/(no_shows[\"Age\"].max()-no_shows[\"Age\"].min())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Zapisanie wyników jako artefakt"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"language_info": {
|
||
|
"name": "python"
|
||
|
},
|
||
|
"orig_nbformat": 4
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|