ium_478855/notebooks/05_BibliotekiML.ipynb

236 lines
6.4 KiB
Plaintext
Raw Normal View History

2022-04-24 20:51:38 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\PROGRAMY\\Anaconda3\\envs\\ium\\lib\\site-packages\\ipykernel_launcher.py:2: MatplotlibDeprecationWarning: Support for setting an rcParam that expects a str value to a non-str value is deprecated since 3.5 and support will be removed two minor releases later.\n",
" \n"
]
}
],
"source": [
"matplotlib.rc('text', usetex=True)\n",
"matplotlib.rcParams['text.latex.preamble']=[r\"\\usepackage{amsmath}\"]\n",
"sns.set_style(\"darkgrid\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = pd.read_csv('../train_dataset.csv')\n",
"test_dataset = pd.read_csv('../test_dataset.csv')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"X_train = train_dataset.drop(columns=['No-show']).to_numpy()\n",
"X_test = test_dataset.drop(columns=['No-show']).to_numpy()\n",
"y_train = train_dataset['No-show'].to_numpy()\n",
"y_test = test_dataset['No-show'].to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"class LogisticRegression(torch.nn.Module):\n",
" def __init__(self, input_dim, output_dim):\n",
" super(LogisticRegression, self).__init__()\n",
" self.linear = torch.nn.Linear(input_dim, output_dim) \n",
" def forward(self, x):\n",
" outputs = torch.sigmoid(self.linear(x))\n",
" return outputs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"epochs = 50_000\n",
"input_dim = 9\n",
"output_dim = 1\n",
"learning_rate = 0.01"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"model = LogisticRegression(input_dim, output_dim)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.BCELoss()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test = torch.Tensor(X_train),torch.Tensor(X_test)\n",
"y_train, y_test = torch.Tensor(y_train),torch.Tensor(y_test)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training Epochs: 100%|██████████| 50000/50000 [02:01<00:00, 411.29it/s]\n"
]
}
],
"source": [
"losses = []\n",
"losses_test = []\n",
"Iterations = []\n",
"iter = 0\n",
"for epoch in tqdm(range(int(epochs)), desc='Training Epochs'):\n",
" x = X_train\n",
" labels = y_train\n",
" optimizer.zero_grad() # Setting our stored gradients equal to zero\n",
" outputs = model(X_train)\n",
" loss = criterion(torch.squeeze(outputs), labels) \n",
" \n",
" loss.backward() # Computes the gradient of the given tensor w.r.t. the weights/bias\n",
" \n",
" optimizer.step() # Updates weights and biases with the optimizer (SGD)\n",
" \n",
" iter+=1\n",
" if iter%10000==0:\n",
" with torch.no_grad():\n",
" # Calculating the loss and accuracy for the test dataset\n",
" correct_test = 0\n",
" total_test = 0\n",
" outputs_test = torch.squeeze(model(X_test))\n",
" loss_test = criterion(outputs_test, y_test)\n",
" \n",
" predicted_test = outputs_test.round().detach().numpy()\n",
" total_test += y_test.size(0)\n",
" correct_test += np.sum(predicted_test == y_test.detach().numpy())\n",
" accuracy_test = 100 * correct_test/total_test\n",
" losses_test.append(loss_test.item())\n",
" \n",
" # Calculating the loss and accuracy for the train dataset\n",
" total = 0\n",
" correct = 0\n",
" total += y_train.size(0)\n",
" correct += np.sum(torch.squeeze(outputs).round().detach().numpy() == y_train.detach().numpy())\n",
" accuracy = 100 * correct/total\n",
" losses.append(loss.item())\n",
" Iterations.append(iter)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iteration: 50000. \n",
"Test - Loss: 0.480914831161499. Accuracy: 79.76567447751742\n",
"Train - Loss: 0.48352959752082825. Accuracy: 79.37570685365301\n",
"\n"
]
}
],
"source": [
"print(f\"Iteration: {iter}. \\nTest - Loss: {loss_test.item()}. Accuracy: {accuracy_test}\")\n",
"print(f\"Train - Loss: {loss.item()}. Accuracy: {accuracy}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"with open(\"logs.txt\", \"a\") as myfile:\n",
" myfile.write(f\"loss={loss.item()}, accuracy={accuracy}\\n\")"
]
}
],
"metadata": {
"interpreter": {
"hash": "3c12dc341c1078754dffca0e61bfc548ab04f96cfe0a82a85a936b702c4881ab"
},
"kernelspec": {
"display_name": "Python 3.7.11 ('ium')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.11"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}