05 - Biblioteki DL

This commit is contained in:
ulaniuk 2022-04-24 20:51:38 +02:00
parent 9573169b9b
commit 3f803ca909
14 changed files with 110926 additions and 30 deletions

View File

@ -10,10 +10,14 @@ ENV KAGGLE_KEY=${KAGGLE_KEY}
RUN pip install --user kaggle
RUN pip install --user pandas
RUN pip install --user sklearn
RUN pip install --user torch
RUN pip install --user tqdm
RUN pip install --user seaborn
COPY KaggleV2-May-2016.csv ./
COPY create_data.py ./
COPY stats_data.py ./
COPY stats_data.py ./
CMD ["python", "create_data.py"]
CMD ["python", "stats_data.py"]
# CMD ["python", "create_data.py"]
# CMD ["python", "stats_data.py"]

View File

@ -1,27 +0,0 @@
# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.model_selection import train_test_split
# Data preproccesing
no_shows=pd.read_csv('KaggleV2-May-2016.csv')
# Usunięcie negatywnego wieku
no_shows = no_shows.drop(no_shows[no_shows["Age"] < 0].index)
# Usunięcie kolumn PatientId oraz AppointmentID
no_shows.drop(["PatientId", "AppointmentID"], inplace=True, axis=1)
# Zmiena wartości kolumny No-show z Yes/No na wartość boolowską
no_shows["No-show"] = no_shows["No-show"].map({'Yes': 1, 'No': 0})
# Normalizacja kolumny Age
no_shows["Age"]=(no_shows["Age"]-no_shows["Age"].min())/(no_shows["Age"].max()-no_shows["Age"].min())
X = no_shows.drop(columns=['No-show'])
y = no_shows['No-show']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("Quiting create_data.py")

12
data_description.csv Normal file
View File

@ -0,0 +1,12 @@
,PatientId,AppointmentID,Gender,ScheduledDay,AppointmentDay,Age,Neighbourhood,Scholarship,Hipertension,Diabetes,Alcoholism,Handcap,SMS_received,No-show
count,110527.0,110527.0,110527,110527,110527,110527.0,110527,110527.0,110527.0,110527.0,110527.0,110527.0,110527.0,110527
unique,,,2,103549,27,,81,,,,,,,2
top,,,F,2016-05-06T07:09:54Z,2016-06-06T00:00:00Z,,JARDIM CAMBURI,,,,,,,No
freq,,,71840,24,4692,,7717,,,,,,,88208
mean,147496265710394.06,5675305.123426855,,,,37.08887421173107,,0.09826558216544373,0.1972459218109602,0.07186479321794674,0.030399811810688793,0.022247957512643968,0.32102563174608917,
std,256094920291739.1,71295.75153966925,,,,23.110204963682644,,0.2976747541093071,0.397921349947084,0.25826507350746697,0.17168555541424485,0.16154272581427898,0.46687273170186816,
min,39217.84439,5030230.0,,,,-1.0,,0.0,0.0,0.0,0.0,0.0,0.0,
25%,4172614444192.0,5640285.5,,,,18.0,,0.0,0.0,0.0,0.0,0.0,0.0,
50%,31731838713978.0,5680573.0,,,,37.0,,0.0,0.0,0.0,0.0,0.0,0.0,
75%,94391720898175.0,5725523.5,,,,55.0,,0.0,0.0,0.0,0.0,0.0,1.0,
max,999981631772427.0,5790484.0,,,,115.0,,1.0,1.0,1.0,1.0,4.0,1.0,
1 PatientId AppointmentID Gender ScheduledDay AppointmentDay Age Neighbourhood Scholarship Hipertension Diabetes Alcoholism Handcap SMS_received No-show
2 count 110527.0 110527.0 110527 110527 110527 110527.0 110527 110527.0 110527.0 110527.0 110527.0 110527.0 110527.0 110527
3 unique 2 103549 27 81 2
4 top F 2016-05-06T07:09:54Z 2016-06-06T00:00:00Z JARDIM CAMBURI No
5 freq 71840 24 4692 7717 88208
6 mean 147496265710394.06 5675305.123426855 37.08887421173107 0.09826558216544373 0.1972459218109602 0.07186479321794674 0.030399811810688793 0.022247957512643968 0.32102563174608917
7 std 256094920291739.1 71295.75153966925 23.110204963682644 0.2976747541093071 0.397921349947084 0.25826507350746697 0.17168555541424485 0.16154272581427898 0.46687273170186816
8 min 39217.84439 5030230.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
9 25% 4172614444192.0 5640285.5 18.0 0.0 0.0 0.0 0.0 0.0 0.0
10 50% 31731838713978.0 5680573.0 37.0 0.0 0.0 0.0 0.0 0.0 0.0
11 75% 94391720898175.0 5725523.5 55.0 0.0 0.0 0.0 0.0 0.0 1.0
12 max 999981631772427.0 5790484.0 115.0 1.0 1.0 1.0 1.0 4.0 1.0

1
logs.txt Normal file
View File

@ -0,0 +1 @@
loss=0.48354023694992065, accuracy=79.3711829902737

View File

@ -0,0 +1,235 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\PROGRAMY\\Anaconda3\\envs\\ium\\lib\\site-packages\\ipykernel_launcher.py:2: MatplotlibDeprecationWarning: Support for setting an rcParam that expects a str value to a non-str value is deprecated since 3.5 and support will be removed two minor releases later.\n",
" \n"
]
}
],
"source": [
"matplotlib.rc('text', usetex=True)\n",
"matplotlib.rcParams['text.latex.preamble']=[r\"\\usepackage{amsmath}\"]\n",
"sns.set_style(\"darkgrid\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = pd.read_csv('../train_dataset.csv')\n",
"test_dataset = pd.read_csv('../test_dataset.csv')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"X_train = train_dataset.drop(columns=['No-show']).to_numpy()\n",
"X_test = test_dataset.drop(columns=['No-show']).to_numpy()\n",
"y_train = train_dataset['No-show'].to_numpy()\n",
"y_test = test_dataset['No-show'].to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"class LogisticRegression(torch.nn.Module):\n",
" def __init__(self, input_dim, output_dim):\n",
" super(LogisticRegression, self).__init__()\n",
" self.linear = torch.nn.Linear(input_dim, output_dim) \n",
" def forward(self, x):\n",
" outputs = torch.sigmoid(self.linear(x))\n",
" return outputs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"epochs = 50_000\n",
"input_dim = 9\n",
"output_dim = 1\n",
"learning_rate = 0.01"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"model = LogisticRegression(input_dim, output_dim)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.BCELoss()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test = torch.Tensor(X_train),torch.Tensor(X_test)\n",
"y_train, y_test = torch.Tensor(y_train),torch.Tensor(y_test)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training Epochs: 100%|██████████| 50000/50000 [02:01<00:00, 411.29it/s]\n"
]
}
],
"source": [
"losses = []\n",
"losses_test = []\n",
"Iterations = []\n",
"iter = 0\n",
"for epoch in tqdm(range(int(epochs)), desc='Training Epochs'):\n",
" x = X_train\n",
" labels = y_train\n",
" optimizer.zero_grad() # Setting our stored gradients equal to zero\n",
" outputs = model(X_train)\n",
" loss = criterion(torch.squeeze(outputs), labels) \n",
" \n",
" loss.backward() # Computes the gradient of the given tensor w.r.t. the weights/bias\n",
" \n",
" optimizer.step() # Updates weights and biases with the optimizer (SGD)\n",
" \n",
" iter+=1\n",
" if iter%10000==0:\n",
" with torch.no_grad():\n",
" # Calculating the loss and accuracy for the test dataset\n",
" correct_test = 0\n",
" total_test = 0\n",
" outputs_test = torch.squeeze(model(X_test))\n",
" loss_test = criterion(outputs_test, y_test)\n",
" \n",
" predicted_test = outputs_test.round().detach().numpy()\n",
" total_test += y_test.size(0)\n",
" correct_test += np.sum(predicted_test == y_test.detach().numpy())\n",
" accuracy_test = 100 * correct_test/total_test\n",
" losses_test.append(loss_test.item())\n",
" \n",
" # Calculating the loss and accuracy for the train dataset\n",
" total = 0\n",
" correct = 0\n",
" total += y_train.size(0)\n",
" correct += np.sum(torch.squeeze(outputs).round().detach().numpy() == y_train.detach().numpy())\n",
" accuracy = 100 * correct/total\n",
" losses.append(loss.item())\n",
" Iterations.append(iter)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iteration: 50000. \n",
"Test - Loss: 0.480914831161499. Accuracy: 79.76567447751742\n",
"Train - Loss: 0.48352959752082825. Accuracy: 79.37570685365301\n",
"\n"
]
}
],
"source": [
"print(f\"Iteration: {iter}. \\nTest - Loss: {loss_test.item()}. Accuracy: {accuracy_test}\")\n",
"print(f\"Train - Loss: {loss.item()}. Accuracy: {accuracy}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"with open(\"logs.txt\", \"a\") as myfile:\n",
" myfile.write(f\"loss={loss.item()}, accuracy={accuracy}\\n\")"
]
}
],
"metadata": {
"interpreter": {
"hash": "3c12dc341c1078754dffca0e61bfc548ab04f96cfe0a82a85a936b702c4881ab"
},
"kernelspec": {
"display_name": "Python 3.7.11 ('ium')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.11"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

62
scripts/create_data.py Normal file
View File

@ -0,0 +1,62 @@
# -*- coding: utf-8 -*-
from matplotlib.pyplot import show
import pandas as pd
from datetime import datetime
# from torch.utils.data import random_split
from sklearn.model_selection import train_test_split
def to_datetime(string):
return datetime.strptime(string.replace('T', ' ').replace('Z', ''), '%Y-%m-%d %H:%M:%S')
# Data preproccesing
no_shows=pd.read_csv('KaggleV2-May-2016.csv')
# Usunięcie negatywnego wieku
no_shows = no_shows.drop(no_shows[no_shows["Age"] < 0].index)
# Usunięcie kolumn PatientId oraz AppointmentID
no_shows.drop(["PatientId", "AppointmentID"], inplace=True, axis=1)
# Zmiena wartości kolumny No-show z Yes/No na wartość boolowską
no_shows["No-show"] = no_shows["No-show"].map({'Yes': 1, 'No': 0})
# Zmiena wartości kolumny Gender z Male/Female na wartość boolowską
no_shows["Gender"] = no_shows["Gender"].map({'M': 1, 'F': 0})
# Normalizacja kolumny Age
no_shows["Age"]=(no_shows["Age"]-no_shows["Age"].min())/(no_shows["Age"].max()-no_shows["Age"].min())
# ScheduledDay - AppointmentDay -> czas miedzy ScheduledDay i AppointmentDay
no_shows["AppointmentDay"] = no_shows["AppointmentDay"].apply(lambda x: to_datetime(x))
no_shows["ScheduledDay"] = no_shows["ScheduledDay"].apply(lambda x: to_datetime(x))
no_shows['DaysSinceSchedule'] = no_shows.apply(lambda row: (row.AppointmentDay - row.ScheduledDay).days + 1, axis=1)
no_shows.drop(["ScheduledDay", "AppointmentDay"], inplace=True, axis=1)
no_shows.insert(2, 'DaysSinceSchedule', no_shows.pop('DaysSinceSchedule'))
# Usuniecie kolumny Neighbourhood
no_shows.drop(['Neighbourhood'], inplace=True, axis=1)
X = no_shows.drop(columns=['No-show'])
y = no_shows['No-show']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# test_size = int(0.2 * len(no_shows))
# train_size = len(no_shows) - test_size
# train_dataset, test_dataset = random_split(no_shows, [train_size, test_size])
# train_dataset = pd.DataFrame(train_dataset.numpy())
# test_dataset = pd.DataFrame(test_dataset.numpy())
train_dataset = pd.concat([X_train, y_train], axis=1)
test_dataset = pd.concat([X_test, y_test], axis=1)
train_dataset.to_csv('train_dataset.csv', index=False)
test_dataset.to_csv('test_dataset.csv', index=False)
print("Quiting create_data.py")

View File

@ -3,7 +3,6 @@
import pandas as pd
# Data description
no_shows=pd.read_csv('KaggleV2-May-2016.csv')
# Wielkość zbioru

82
scripts/train_model.py Normal file
View File

@ -0,0 +1,82 @@
import torch
import pandas as pd
import numpy as np
from tqdm import tqdm
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
train_dataset = pd.read_csv('train_dataset.csv')
test_dataset = pd.read_csv('test_dataset.csv')
X_train = train_dataset.drop(columns=['No-show']).to_numpy()
X_test = test_dataset.drop(columns=['No-show']).to_numpy()
y_train = train_dataset['No-show'].to_numpy()
y_test = test_dataset['No-show'].to_numpy()
class LogisticRegression(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x):
outputs = torch.sigmoid(self.linear(x))
return outputs
epochs = 50_000
input_dim = 9
output_dim = 1
learning_rate = 0.01
model = LogisticRegression(input_dim, output_dim)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
X_train, X_test = torch.Tensor(X_train),torch.Tensor(X_test)
y_train, y_test = torch.Tensor(y_train),torch.Tensor(y_test)
losses = []
losses_test = []
Iterations = []
iter = 0
for epoch in tqdm(range(int(epochs)), desc='Training Epochs'):
x = X_train
labels = y_train
optimizer.zero_grad() # Setting our stored gradients equal to zero
outputs = model(X_train)
loss = criterion(torch.squeeze(outputs), labels)
loss.backward() # Computes the gradient of the given tensor w.r.t. the weights/bias
optimizer.step() # Updates weights and biases with the optimizer (SGD)
iter+=1
if iter%10000==0:
with torch.no_grad():
# Calculating the loss and accuracy for the test dataset
correct_test = 0
total_test = 0
outputs_test = torch.squeeze(model(X_test))
loss_test = criterion(outputs_test, y_test)
predicted_test = outputs_test.round().detach().numpy()
total_test += y_test.size(0)
correct_test += np.sum(predicted_test == y_test.detach().numpy())
accuracy_test = 100 * correct_test/total_test
losses_test.append(loss_test.item())
# Calculating the loss and accuracy for the train dataset
total = 0
correct = 0
total += y_train.size(0)
correct += np.sum(torch.squeeze(outputs).round().detach().numpy() == y_train.detach().numpy())
accuracy = 100 * correct/total
losses.append(loss.item())
Iterations.append(iter)
print(f"Iteration: {iter}. \nTest - Loss: {loss_test.item()}. Accuracy: {accuracy_test}")
print(f"Train - Loss: {loss.item()}. Accuracy: {accuracy}\n")
with open("logs.txt", "a") as myfile:
myfile.write(f"loss={loss.item()}, accuracy={accuracy}\n")

22107
test_dataset.csv Normal file

File diff suppressed because it is too large Load Diff

88421
train_dataset.csv Normal file

File diff suppressed because it is too large Load Diff