import torch import pandas as pd import numpy as np from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt import seaborn as sns train_dataset = pd.read_csv('train_dataset_dvc.csv') test_dataset = pd.read_csv('test_dataset_dvc.csv') X_train = train_dataset.drop(columns=['No-show']).to_numpy() X_test = test_dataset.drop(columns=['No-show']).to_numpy() y_train = train_dataset['No-show'].to_numpy() y_test = test_dataset['No-show'].to_numpy() class LogisticRegression(torch.nn.Module): def __init__(self, input_dim, output_dim): super(LogisticRegression, self).__init__() self.linear = torch.nn.Linear(input_dim, output_dim) def forward(self, x): outputs = torch.sigmoid(self.linear(x)) return outputs epochs = 50_000 input_dim = 9 output_dim = 1 learning_rate = 0.01 model = LogisticRegression(input_dim, output_dim) criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) X_train, X_test = torch.Tensor(X_train),torch.Tensor(X_test) y_train, y_test = torch.Tensor(y_train),torch.Tensor(y_test) losses = [] losses_test = [] Iterations = [] iter = 0 for epoch in tqdm(range(int(epochs)), desc='Training Epochs'): x = X_train labels = y_train optimizer.zero_grad() # Setting our stored gradients equal to zero outputs = model(X_train) loss = criterion(torch.squeeze(outputs), labels) loss.backward() # Computes the gradient of the given tensor w.r.t. the weights/bias optimizer.step() # Updates weights and biases with the optimizer (SGD) iter+=1 if iter%10000==0: with torch.no_grad(): # Calculating the loss and accuracy for the test dataset correct_test = 0 total_test = 0 outputs_test = torch.squeeze(model(X_test)) loss_test = criterion(outputs_test, y_test) predicted_test = outputs_test.round().detach().numpy() total_test += y_test.size(0) correct_test += np.sum(predicted_test == y_test.detach().numpy()) accuracy_test = 100 * correct_test/total_test losses_test.append(loss_test.item()) # Calculating the loss and accuracy for the train dataset total = 0 correct = 0 total += y_train.size(0) correct += np.sum(torch.squeeze(outputs).round().detach().numpy() == y_train.detach().numpy()) accuracy = 100 * correct/total losses.append(loss.item()) Iterations.append(iter) print(f"Iteration: {iter}. \nTest - Loss: {loss_test.item()}. Accuracy: {accuracy_test}") print(f"Train - Loss: {loss.item()}. Accuracy: {accuracy}\n") with open("logs.txt", "a") as myfile: myfile.write(f"loss={loss.item()}, accuracy={accuracy}\n") with open("logs_dvc.txt", "a") as myfile: myfile.write(f"loss={loss.item()}, accuracy={accuracy}\n")