paranormal-or-skeptic/run2.py
2022-06-22 13:32:19 +02:00

158 lines
4.7 KiB
Python

# -*- coding: utf-8 -*-
"""run2.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1hC17fLfkUeCrO84M6Hvy8haJF8AdEQ0T
"""
import torch
torch.cuda.is_available()
torch.cuda.device_count()
torch.cuda.current_device()
torch.cuda.device(0)
torch.cuda.get_device_name(0)
# run this cell, then restart the runtime before continuing
!pip install git+https://github.com/joeddav/transformers.git@data-collator-type-fix
!pip install nlp
!pip install transformers
!pip install datasets
from google.colab import drive
drive.mount('/content/drive')
from transformers import BertForSequenceClassification, BertTokenizerFast, Trainer, TrainingArguments
from nlp import load_dataset
import torch
import numpy as np
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from datasets import Dataset, load_dataset
import re
import pandas as pd
from sklearn.model_selection import train_test_split
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
with open('/content/drive/MyDrive/eks/train/in.tsv', 'r', encoding='utf8') as f:
X_train = f.readlines()
with open('/content/drive/MyDrive/eks/train/expected.tsv', 'r', encoding='utf8') as f:
y_train = f.readlines()
with open('/content/drive/MyDrive/eks/dev-0/in.tsv', 'r', encoding='utf8') as f:
X_dev = f.readlines()
with open('/content/drive/MyDrive/eks/dev-0/expected.tsv', 'r', encoding='utf8') as f:
y_dev = f.readlines()
with open('/content/drive/MyDrive/eks/test-A/in.tsv', 'r', encoding='utf8') as f:
X_test = f.readlines()
for i, line in enumerate(X_train):
X_train[i] = re.sub(r'\t[0-9]+\n', '', line)
for i, line in enumerate(X_dev):
X_dev[i] = re.sub(r'\t[0-9]+\n', '', line)
for i, line in enumerate(X_test):
X_test[i] = re.sub(r'\t[0-9]+\n', '', line)
for i, line in enumerate(y_train):
y_train[i] = re.sub(r'\n', '', line)
for i, line in enumerate(y_dev):
y_dev[i] = re.sub(r'\n', '', line)
y_train = list(map(int, y_train))
df = pd.DataFrame({"text": X_train, "label": y_train})
df = df.sample(frac = 0.1)
df80 = df.sample(frac = 0.80)
df20 = df.drop(df80.index)
def tokenize(batch):
return tokenizer(batch['text'], padding=True, truncation=True)
train_dataset, test_dataset = Dataset.from_pandas(df80), Dataset.from_pandas(df20)
train_dataset = train_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))
test_dataset = test_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))
train_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
test_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=1,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
)
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=test_dataset
)
trainer.train()
trainer.evaluate()
# Commented out IPython magic to ensure Python compatibility.
# %load_ext tensorboard
# %tensorboard --logdir logs
y_dev = list(map(int, y_dev))
y_test = [0 for _ in X_test]
df_dev = pd.DataFrame({"text": X_dev, "label": y_dev})
df_test = pd.DataFrame({"text": X_test, "label": y_test})
dev_dataset, testA_dataset = Dataset.from_pandas(df_dev), Dataset.from_pandas(df_test)
dev_dataset = dev_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))
testA_dataset = testA_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))
dev_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
testA_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
y_pred_dev = trainer.predict(dev_dataset).predictions
y_pred_test = trainer.predict(testA_dataset).predictions
def get_labels(predictions):
return [0 if a > b else 1 for a, b in predictions]
y_pred_dev = get_labels(y_pred_dev)
y_pred_test = get_labels(y_pred_test)
with open('/content/drive/MyDrive/eks/dev-0/out.tsv', 'wt') as f:
for pred in y_pred_dev:
f.write(str(pred)+'\n')
with open('/content/drive/MyDrive/eks/test-A/out.tsv', 'wt') as f:
for pred in y_pred_test:
f.write(str(pred)+'\n')