{ "cells": [ { "cell_type": "code", "execution_count": 535, "metadata": {}, "outputs": [], "source": [ "import random" ] }, { "cell_type": "code", "execution_count": 536, "metadata": {}, "outputs": [], "source": [ "with open('dev-0/in.tsv', 'r') as f:\n", " dev_x = f.readlines()" ] }, { "cell_type": "code", "execution_count": 538, "metadata": {}, "outputs": [], "source": [ "m_vocabulary = ['komputer', 'komputerze', 'aucie', 'auto', 'samochód', 'samochodzie', 'piwie', 'piwo', 'alkoholu', 'alkohol', 'żonie', 'żona', 'xboxie', 'xbox', 'co', 'e', 'XD', 'stary', 'staremu']" ] }, { "cell_type": "code", "execution_count": 539, "metadata": {}, "outputs": [], "source": [ "f_vocabulary = ['zakupy', 'zakupach', 'mężem', 'mąż', 'nasze', 'my', 'dzieckiem', 'dziecko', 'domu', 'dom', 'mieszkaniu', 'mieszkanie', 'kocham', 'kocha', 'chłopakowai', 'chłopak', 'haha', 'boże', 'uh', 'uhh', \":)\", 'mama', 'mamie', 'włosy']" ] }, { "cell_type": "code", "execution_count": 540, "metadata": {}, "outputs": [], "source": [ "def predict(text):\n", " score = 0\n", "\n", " for word in m_vocabulary:\n", " if word in text:\n", " score += 1\n", "\n", " for word in f_vocabulary:\n", " if word in text:\n", " score -= 1\n", "\n", " if score == 0:\n", " return random.randint(0, 1)\n", " if score >0:\n", " return 1\n", " if score <0:\n", " return 0" ] }, { "cell_type": "code", "execution_count": 541, "metadata": {}, "outputs": [], "source": [ "with open('dev-0/expected.tsv', 'r') as f:\n", " dev_y = f.readlines()" ] }, { "cell_type": "code", "execution_count": 542, "metadata": {}, "outputs": [], "source": [ "dev = zip(dev_x, dev_y)" ] }, { "cell_type": "code", "execution_count": 543, "metadata": {}, "outputs": [], "source": [ "correct = 0\n", "incorrect = 0\n", "\n", "with open('dev-0/out.tsv', 'wt') as f:\n", " for x, y in list(dev):\n", " f.write(str(predict(x))+'\\n')\n", " if predict(x) == int(y):\n", " correct += 1\n", " else:\n", " incorrect += 1\n", " " ] }, { "cell_type": "code", "execution_count": 544, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5122792230182751" ] }, "execution_count": 544, "metadata": {}, "output_type": "execute_result" } ], "source": [ "correct/(correct+incorrect)" ] } ], "metadata": { "interpreter": { "hash": "8a24ca87d97ac268fc796e79e77f73ca37fd3e060a17758a6f2d8f8d4f13ae6a" }, "kernelspec": { "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }