diff --git a/analysis.ipynb b/analysis.ipynb
new file mode 100644
index 0000000..362ad8e
--- /dev/null
+++ b/analysis.ipynb
@@ -0,0 +1,539 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "0ba6ee9e",
+ "metadata": {},
+ "source": [
+ "# Titanic_Machine_Learning_from_Disaster"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ec6e69b1",
+ "metadata": {},
+ "source": [
+ "# Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "ffcae455",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import plotly.express as px"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1b19cf9",
+ "metadata": {},
+ "source": [
+ "# Data description"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3174342e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_train = pd.read_csv('train.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "4d561fad",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\n",
+ " 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_train.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7818fc15",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Fare | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 714.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 446.000000 | \n",
+ " 0.383838 | \n",
+ " 2.308642 | \n",
+ " 29.699118 | \n",
+ " 0.523008 | \n",
+ " 0.381594 | \n",
+ " 32.204208 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 257.353842 | \n",
+ " 0.486592 | \n",
+ " 0.836071 | \n",
+ " 14.526497 | \n",
+ " 1.102743 | \n",
+ " 0.806057 | \n",
+ " 49.693429 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 0.420000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 223.500000 | \n",
+ " 0.000000 | \n",
+ " 2.000000 | \n",
+ " 20.125000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 7.910400 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 446.000000 | \n",
+ " 0.000000 | \n",
+ " 3.000000 | \n",
+ " 28.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 14.454200 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 668.500000 | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 38.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 31.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 891.000000 | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 80.000000 | \n",
+ " 8.000000 | \n",
+ " 6.000000 | \n",
+ " 512.329200 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass Age SibSp \\\n",
+ "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n",
+ "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n",
+ "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n",
+ "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n",
+ "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n",
+ "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n",
+ "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n",
+ "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n",
+ "\n",
+ " Parch Fare \n",
+ "count 891.000000 891.000000 \n",
+ "mean 0.381594 32.204208 \n",
+ "std 0.806057 49.693429 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 0.000000 7.910400 \n",
+ "50% 0.000000 14.454200 \n",
+ "75% 0.000000 31.000000 \n",
+ "max 6.000000 512.329200 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_train.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "07234316",
+ "metadata": {},
+ "source": [
+ "# Analysis before data cleaning"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "1472e369",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABHU0lEQVR4nO3deXhU5dnH8e89M5nJvhAS9i3sBAQFEXEHRKxWrbVqa2ttq5aq7avVVruAW0VwAcGlSK2tti61FZeCiIC7EBZlh7AjBIKQANkz6/P+kWARAtlm5sxyf64rF8nMyTm3TvLLM895FjHGoJRSKvxsVheglFLxSgNYKaUsogGslFIW0QBWSimLaAArpZRFHFYXEArjxo0z7777rtVlKKXUEdLQgzHZAi4pKbG6BKWUalRMBrBSSkUDDWCllLKIBrBSSllEA1gppSyiAayUUhbRAFZKKYtoACullEU0gJVSyiIawEopZRENYKWUsogGsFJKWUQDWCmlLBKTq6EppYLr5Zdf5s03ZgNN20MyIcHJHydMpH///qEtLMppACulTqq0tJS//+1vdEysoUuKr0nfs6okkVmznmXatCdCW1yU0wBWSp3Uq6++is/n5db8CtolB5r0Pe/u9vPyylWsXr2awYMHh7jC6KV9wEqpE9q/fz9vvfkmZ7WrbXL4AozqWEumC/763F8wpmndFvFIA1gpdUIzZ/4ZE/DynR41zfo+px2u6F7JmrXr+PDDD0NTXAzQAFZKNWj16tW8//4HXNKlmrZJTW/9HnF+Rzfd0gI88/RT1NbWhqDC6KcBrJQ6jsfjYdrUx8lOgku6Na/1e4RN4Ie9KzhQUsrf//734BYYIzSAlVLHeeGFF9j55S5u6FOOy97y8/TN9HF+x1pe+9e/WL9+ffAKjBEawEqpbygsLOSVl1/mnA61DM72tvp83+9VTVaiYfLDk3C73UGoMHZoACulvlZZWckD999Hpsvwg17VQTlnksPws77l7C7aw5NPPhmUc8YKHQccRzweD2+++eY3bojk5eVx9tlnW1iVihTGGB599BH27dvH708tIyUheMPHBrbxcknXGubMmcOQIUMYM2ZM0M4dzSwNYBF5HrgU2G+MGdjA89cBd9d/WQn8whizOowlxpTFixfzzDPPfOMxR0IC8955h4SEBIuqUpHijTfe4KOPPuaanlX0yWzajLfmuCqvmi3lCTz26CP07t2bbt26Bf0a0cbqLoi/A+NO8vwO4DxjzCnAg8CscBQVqwoLC8Fmp+K066kYdgM1eefh83rZvn271aUpi33xxRc89dRTnNrWw8VdQzNkzG6DW/IrcOLh97+7h/Ly8pBcJ5pYGsDGmI+Bgyd5frEx5lD9lwVA57AUFqM2biwkkNQG7A4QG/6UHKA+mFXc2r17N/dOmECHZB/jB1Rik9Bdq40rwP8NLOOrfcXcO3EiPl/wW9rRxOoWcHP8DJh3oidF5GYRWSEiKw4cOBDGsqKD1+tlw8YN+FJzvn7MuNIQZzJr1661sDJlpbKyMn53z93greKOQWUkOUI/bbh3ho+f9q1g5apVTJs2La6nKkdFAIvIBdQF8N0nOsYYM8sYM8wYMywnJ+dEh8WtwsJCvB4P/rT2/3tQBE9KO75YuTKufwniVU1NDffc/Vu+Kt7LrwaWkduC2W4tdXYHD9/uVs3cuXPjepJGxAewiJwCPAdcbowptbqeaLVy5UoA/Kntv/G4P709B0tL2bNnjxVlKYv4fD7uu/deCjdt4hf5FfQNwU23xlyVV8M5HWp54YUXeOutt8J+/UgQ0QEsIl2B2cCPjDGbra4nmhUULCWQ0haTkPiNx33pnQBYunSpFWUpC/j9fiZPnszSZcu4oU8lw3I8ltQhAj/tW8WpbT088cQ0Fi1aZEkdVrI0gEXkFWAJ0FdEikTkZyIyXkTG1x8yEcgGnhGRVSKywrJio1h5eTkbN27Am3H8PUyTmA5JGRQUFFhQmQq3QCDA1KlTWbhwId/Lq+KCTtbOTDsyMqJvpo+HHnqITz75xNJ6ws3qURDfN8Z0MMYkGGM6G2P+aoyZaYyZWf/8jcaYLGPMkPqPYVbWG62WLFmCMQZfRpcGn/ekd+aLlSupqqoKc2UqnIwxzJgxg7lz53J592q+3T0yVihz2eGOQWXkpXm5/7774qoxENFdECo4PvroI3ClEkhp2+Dzvqzu+H0+lixZEubKVLgYY3j66ad58803ubhrDVc2c33fUEtywJ2nlNE5xcuECX+Mmy4xDeAYV1lZybJly/Fkdq3rdGuAPzUXcSbzwQcfhLk6FQ5HWr7/+c9/GNu5hmt7Vp/oR8FSKQmG3ww+TMdED3/8w+/joiWsARzjPv74Y3w+L942eSc+SAR3Vg8KCgp0dlKMMcYwffp03njjDcZ1qeG63pEZvkekJRjuHnKYTsleJvzxDyxevNjqkkJKAzjGvffee5CUQSDl5GOjvdk98fv9un1MDAkEAjz++ONfdzt8v1dkh+8RqQmGuwcfpnOyh4kTJsT0jTkN4BhWXFzMqtWrcbfpecLuhyMCydmY5CzeeeedMFWnQsnv9zNlyhTmzJnDt7tVR2y3w4mkJBh+O7iM7qke7r33Xt5//32rSwoJDeAYNm/ePDAGb3avxg8WwZ3dm8LCQl2cJ8r5fHVDuubPn8+VPaq5Kq8mqsL3iCN9wr3SPfzpwQfr3s3FGA3gGOXz+Zg79x18GZ0xrtSmfU92L7DZmDt3boirU6Hi9Xp54IEHeP/99/leXhVX9IjO8D0iyQG/GVxGv0wvDz88KebeoWkAx6iCggJKS0vw5vRp8veYhES8md2Y9+67uottFPJ46t6uf/zxx/ygV1XEjPNtLZcdfn1KGflZXh555JGYmrasARyj3njzTXCl4Mvs2qzv8+b2p7qqSoekRRm3282ECX9k8eLFXN+nknEhWtPXKk473D6onMHZHqZNm8bs2bOtLikoNIBjUFFREZ+vWIE7uw9I815if2o7THIWs994I0TVqWDzeOpGCyxduoyf9K1kTOfY3PjSaYf/G1TB0BwPM2bMiIkQ1gCOQW+99RaIDW9O3+Z/swjutn3ZsnkzGzduDH5xKqg8Hg8TJ05g6bK68LV6bYdQc9jg1vwKhratC+E3oryhoAEcY2pra5n7zjt4s7phnMktOoe3bW/E4Yz6H+5Y5/P5uO++eykoWBoX4XuEwwa3Dqzg1LYepk+fzn//+1+rS2oxDeAYs2jRIqqrqvDm9m/5SewJuNv05P33P+Dw4cNBq00FTyAQYPLkySxevITr+8RP+B7hsMEvB1YwONvL1KmPR+04YQ3gGPPGm29ikrPwp7Zr1Xm8uf3w+by8++67QapMBYsxhieffJKFCxdyVV51zPb5NsZhg9sGltMnw8ekhx6KygV8NIBjSGFhIVu3bMGd06/RmW+NCSRl4U9rzxtvvkkgEL6talTjXnrpJd544w0u7lLDt7tF1qpm4eaywx2nlNMp2cvECX+Mug1mNYBjyNy5cxF7At42PYNyPk9OX77at49Vq1YF5Xyq9T766COee+45zmzn5tooWdsh1JIdhrsGHybN7uUPv7uHaNqUVwM4RtTU1LBg4UI8md3A4QzKOX1Z3RCHS2fGRYhNmzYx6aE/0SvDz8/6VWr4HiXDabhj0GGqKg7z+9/9jpqa6HhnoAEcIz755BNqa2qaNfOtUTYH7jZ5fPTRx1RWVgbvvKrZKioq+OMffk+q3cv/DSrDabe6osjTJdXPLQPK2bptK1OnTrW6nCbRAI4RCxcuhMS0Vt98O5Y3uyc+n5dPP/00qOdVTWeM4bHHHuVgaSm/zD9MhtNYXVLEGtLWy+XdqlmwYEHd70SE0wCOAYcPH2bFihW4M7u3+ubbsQIpOZCYzsI43LE2UsybN4+PPvqY7+ZVkZfut7qciHd59xp6Z/iZ+vhjFBcXW13OSWkAx4CCggICgQC+Nj2Cf3IR3JndWPnFF7pppwUOHTrEU0/OoH+Wj2/F2PoOoWK3wfgB5RhfLU9Mm2Z1OSelARwDlixZgjiTCSRnh+T8/swu+P1+VqxYEZLzqxN7/vnncdfW8uM+Fdj0pluT5SQFuKJbFUuXLYvo8cEawFHO7/ezbPly3Omdg9798PU1UnORBBfLli0LyflVw7Zt28bcOXMY3amGjik6Fru5LuxcS7tkwzNPPYnP57O6nAZpAEe5nTt3UlNdjT+tfeguIja8ybmsXrM2dNdQx3n11Vdx2Q1XRNgW8tHCYYOr8yr5cndRxG7uqQEc5davXw/UtVJDyZ+aS9HuXbprcpiUlZXx4YcfcFa7WlITdNRDSw3N8ZCdBG+/9abVpTRIAzjKbdmyBUlIxLjSQnodf0pbALZu3RrS66g67733Hl6vjws66Y231rAJnNe+mhWff8GePXusLuc4GsBRbvfu3fhd6SHr/z0ikJgBEJE/xLGooGAJXVIDdEnVYWetdWa7usWKli9fbnElx7M0gEXkeRHZLyLrTvC8iMgMEdkqImtE5LRw1xjpdhftwR/i1i+AcaYgNgdFRUUhv1a88/v9bNywgd4ZHqtLiQm5SQEyXP/rroskDouv/3fgKeDFEzx/MdC7/uMM4M/1/6p65WVlmOwQ3oA7QgScSZSVlYX+WnFu165dVNfU0ivda3UpJ/TPzclsOpxAtU9Idhj6Znr5YZ9qq8tqkAj0SvOwYV3k3US2tAVsjPkYOHiSQy4HXjR1CoBMEekQnuoin9frxev1YOwJYbmesSdQXR2Zv2Sx5Mgi+G0TI3fo2abDCXzlS+W8S6/hK18qmw6H52ewpbIT/RyOwMZDpPcBdwJ2H/V1Uf1jxxGRm0VkhYisiKbl6FrD7a7r2zK28LyRCYg9alaZimZHXteECP7trPYJl156KbfddhuXXHIJ1b7IniWSYKvbPy/SWN0F0ZiGXtUGx+QYY2YBswCGDRsWF+N2EhLqWh1iwnOjRkzg62uq0PF667oebBK5P8bJDsOcOXMwxjB37lzaOSK3VgC7zeD1+THGIBG0jmcE/40F6lq8XY76ujOw16JaIo7TWb/ubyBcAezH5XKF5VrxLCcnB4BSd+SuOZnkMNTW1vL6669TW1tLUoQHcGmtnZzsNhEVvhD5Afw2cH39aIgRQJkxJrKXNwojESE5JRXxhmesqHhrSUsL/YiLeNe1a1cAiqsi/dczehRXO+javbvVZRzH0i4IEXkFOB9oKyJFwL1AAoAxZibwDvAtYCtQDfzEmkojV4f27SkvCcNi6X4vxltL+/ZhGHER55KTk2mX25YdFfG52Wawefywp8rBqd1DsFpgK1kawMaY7zfyvAFuDVM5Ualjxw5sKw798Bqbu24KsgZweIw86xzmvv0mNb5KkiL9Tk2EW13qxO03nHXWWVaXchx9jxPl8vLyoKYM/KEdM2qrKgWgZ8/gbPipTm7UqFF4/IaVJcHZ3y+eFXzlJCszg8GDB1tdynE0gKNcv379wBjs1aUhvY69qoTEpCS6dOnS+MGq1fLz82nfLpcFe5IxkX1/K6IdqLHxRamL0WMuxG6PvJuaGsBRrn///gDYK/aF9DoJVfvp368fNpv+yISDzWbjhz+6nm1ldlaV6tC/lnprZxI2u4Orr77a6lIapL9NUS4zM5OevXrhKA/d6DzxVCHVBxk+fHjIrqGON27cODp2aM/rO1IJaCu42YqrbHy6L5HLL7+C3NzQLtfaUhrAMWDEGWdgr9wPvtDcNbeX1a2ApgEcXg6HgxtvupldFTbm7060upyoEjDw/KY0EhOTuO6666wu54Q0gGPAyJEjwQRwHN7d+MEtkHBoJzm5uXU3/FRYXXDBBYwcOZL/7EjRccHNsKAokU2HHfzyV78iKyvL6nJOSF/RGDBgwADa5uSQcHBH8E/uc+Mo38voUaMibhZRPBAR7rzzThKTUphVmI4vctfniRh7quz8e3sKI0acwbhx46wu56Q0gGOAiDB61CgcFXuCPisu4dBOMAHOP//8oJ5XNV12djZ33vUbtpXZ+eeWFKvLiWjVPmH6ugySU9K4667fRHyjQQM4Rlx00UUQCOAo3RbU8zpLttClazf69u0b1POq5jn//PO59tpreX9PIh/t1fU4GhIwMHNDKgdq7dz/4J9o27at1SU1SgM4RuTl5dG7Tx9cpVsI1sBRW81hbJX7ufSSb0V8SyIe3HTTTQwbehovbE6l8JBOjzvWf7Yns6rEya233haRky4aogEcQy695BKk+iC2quCsh5xwYBN2u50LL7wwKOdTrWO325l473106NiJJ9ZlsLsy8iYWWOW93YnM+TKJSy+9lO985ztWl9NkGsAx5MILL8SVmIjzwKbWnyzgw1W6lXPPPZc2bdq0/nwqKNLT03n0scdJSsvisTWZlNTor/DSr5y8tCWFs84aye233x5V79b01YshycnJjL3wQpwHd7R6TLDj4A6Mz81ll10WpOpUsLRv355HH3scjy2JR1ZnctgdPYETbKtLE5i5MY2BA/OZOPFeHI7o6prRAI4xV1xxBSbgI6Fkc6vO49q/kS5dujJkyJDgFKaCKi8vj8lTHuGw38WU1ZmUe+IvhNcdTGDG2nR65PVk0sOTo3KzAA3gGNOzZ08GDhpE4oFNLb4ZZ6s8gK2qhCuv/E5UvZ2LN4MGDeLhyVMo8biYsiqTCm/8vFaFhxw8sTadLl278/jjU6N2owAN4Bh05Xe+A7Xl2MuKWvT9zv0bcSUmMnbs2CBXpoLt1FNP5aFJD7PP7WTKqvhoCW845ODxNRl06NSFx6dNIyMjw+qSWkwDOAadc845ZGZm4TxQ2Pxv9tXiPLSDi8eNIyVFB/1Hg2HDhjFp0sPsq3UxOcZDeN3BBKauyaR9py5Me2J6RE8zbgoN4BiUkJDAZZd9G8fh3Yi7onnfe2ALJuDXm29R5vTTT+fhyZM54HExaWVWTN6YW1OawLS16XTu0o3pM56MidE5GsAx6tJLL0VESDjQjJtxxpBYupn8gQN14Z0oNHToUKY88igHfS4mrcrioDt2fr1XliTwxNp0unXPY+oTT5CZmWl1SUERO6+Q+obc3FyGn3EGiQe3gmnaCi72in1QU8bl2vqNWkOGDOHRxx6nPJDEpJWxMU54+X4nM9am07N3H6ZOi53wBQ3gmPbtSy/FuKuafDMu4cBmklNSOO+880JcmQqlQYMG8fjUaVRLCg+tyuKr6uj9NV+yz8nT69Po138Ajz8+lfT0dKtLCqrofWVUo0aMGEF6egYJJVsbP9jvwVn2JWNGj47K8ZTqm/r378+0J6bjdaQyaVUWxVEYwp8VO5m5MY1Bg07h0cceIzU11eqSgi76XhXVZA6Hg7FjLyShbHejM+McB3di/L66VdVUTOjduzfTnphOwJnGw6uy2BtFC7p/tNfFrI1pDBkyhMlTppCcnGx1SSERPa+IapGxY8dCwF+3ru9JOA9up0OHjgwYMCA8hamw6NmzJ09Mn4EkZvDwqiz2VEX+Aj4f7nXx18JUhg4byuTJU0hKSrK6pJDRAI5xvXv3pn2HDifdLUO8Ndgrihk9Wne9iEU9evTgiekzsCdnMmVVZkRvbfTxXhd/K0xl+PDTeeihSTHfHRa5r4QKChFh1AUXYK8oBl/Du2U4Du8CY3TXixjWrVs3pk57AhLTmbw6Mm/MfVbsrGv5Dj2NBx/8U8yHL2gAx4VzzjkHjMFxuOHREI5Du8ht156ePXuGuTIVTt27d2fqtCe+7hMuqY2cX/9l+53MKkxjyKlDeGjSw3ERvmBxAIvIOBHZJCJbReSeBp7PEJH/ishqEVkvIj+xos5o17dvX9IzMnGUNbBrcsBHQmUxZ581Ursf4kBeXh6PT52Gu34py0iYtry2NIE/b0gjf0A+k+IofMHCABYRO/A0cDEwAPi+iBx7B+hWYIMxZjBwPvC4iDjDWmgMsNlsjDxzBM6KvcetkGav2Ifx+xgxYoRF1alw69WrF5OnPMIhr5NHV2dS7bMuhLeUOZixLp3u3Xvw8OTJMX3DrSFWtoCHA1uNMduNMR7gVeDyY44xQJrUNc1SgYOAL7xlxobTTjsN43Vjqz74jcft5cXY7XZOOeUUiypTVhg0aBAPPPgn9lQnMH2tNdvdF1fZmLomg7btOvDoY49H7ZKSrWFlAHcCjn5PXFT/2NGeAvoDe4G1wP8Z0/C8WhG5WURWiMiKAweCsydaLDn11FMBsFfs/cbjCRX76N+/P4mJiVaUpSx0xhln8Nu772bjIQd/K0wJ1l6uTVLuER5fm0lCUhqPPvZ4TCys0xJWBnBD73uO/RG4CFgFdASGAE+JSINzEY0xs4wxw4wxw3JycoJZZ0zIycmhffsO2Cv2/+9Bvw9bdUnU7CCrgm/s2LH8+Mc/5pN9iby9Mzxv/z1+mL42g8NeJw89PJmOHTuG5bqRyMoALgK6HPV1Z+paukf7CTDb1NkK7AD6ham+mDNwYD7OmpKvv7ZXl4AxOvkizt1www1ceOGFvL4jmZUlCSG/3j82p7ClzM7v//AH8vPzQ369SGZlAC8HeotIj/oba9cCbx9zzC5gNICItAP6AtvDWmUM6d+/P8ZdhXiqALBV1YVxv376Ny2eiQh33XUXvXv14tmN6SEdI/zBHhcfFSfywx/+UMedY2EAG2N8wG3AfGAj8JoxZr2IjBeR8fWHPQiMFJG1wCLgbmNMScNnVI3p1asXwNc34uzVB8nIzCI7O9vKslQEcLlcPPDgg9hdKUxfl4HbH/xrbC+3848tqQwbNpSf/ERHlILF44CNMe8YY/oYY3oaYx6qf2ymMWZm/ed7jTFjjTGDjDEDjTH/tLLeaHdkkXV7zSEAHLWH6d1LJ1+oOh06dGDCxHspqrTxr63B3Y7K7YeZGzPIapPNhAkTsdsjf02KcIicqTAq5NLS0shq0wZbzWEwBlvtYXr06GF1WSqCDB8+nO9973ss3JPImtLg9Qe/vCWFr6qF3//hj1G9iWawaQDHmS5dumBzlyPeaozfR+fOna0uSUWYG2+8kR7du/FcYTqVQdjqfnVJAh/sTeSaa679ejikqqMBHGe6dO6Mw1OBrbYcgE6djh16reKdy+Xi93/4I+VeG//e1rp1eN1+eGFLOt27deWnP/1pkCqMHRrAcaZ9+/YYTw222sNff63UsXr37s1VV13FB3sT2VrmaPF53tqZTEkN/PrOu3A6dRWBY2kAx5nc3FwA7JV1EzJ00oo6kRtuuIG22W14YXMagRbMkiuutjFvVxLjxo3Tqe4noAEcZ/4XwAdITUuPq5WnVPMkJycz/he38GWFjaVfNb/1+vr2ZBKcLm6++eYQVBcbNIDjTFZWFgA2dznZcTr/XjXdqFGjyOvRndd3pjZrwZ4d5XaW7Xdx9TXXxO06D02hARxnjgQwQHa2/mKok7PZbNx088/ZXy18tq/p75Zm70gmLTWFq6++OoTVRT8N4DiTlpb29cLrOh5TNcWIESPo1asn83anNKkveE+VndWlTq763tUxuZV8MGkAxxmbzUZSct0sp3hcf1U1n4hw9dXXsLdKWNuEyRnv7krEmZDA5Zcfu7y3OpYGcBw60irR1olqqlGjRtE2uw0L9px8ycoqr7D4q0QuGjeOzMzM8BQXxTSA41BCQt24zpSU4M73V7HL4XAw7uJvsfZgAofcJ54dt3S/E28ALr300jBWF700gOOQrb4PON7231KtM27cOIyBxSe5GffpviR6dO9Gnz59wlhZ9NIAjmMawKo5OnfuTP6A/izZ3/DPzYEaG1vL7Iy9aJzusN1EGsBxTPeBU811zrnnsavChreBMcGfl9RN1jjnnHPCXFX00gCOYzoLTjXX2WefDUCF9/joWFnionu3rrrCXjNoAMcxXRxFNVfnzp3p3KkjVccsUxkwsLnMwZkjz7KosuikARzHHI6Wr3Kl4teppw2lxv/N6KjxCf4Aut5vM2kAx7GEhNDvgKtiz5AhQ46bEVftE2w2GwMHDrSmqCilARzHdF8u1RINhWyNX+iZl0dycusWcI83GsBxTLsgVEvk5uZit38zOmr9Nvr262dRRdFLAziOaQtYtYSIkJz8zVmUAYNOvmgBDeA4ZrPpy69apqEx5Hl5eRZUEt30N1Ap1WwNjSHv0qWLBZVENw1gpVSzHdsCttttur50C2gAK6Wa7dhJPE6nzqpsCQ3gOHRkoRRjWrDVrVIcP4ZcZ1W2jKUBLCLjRGSTiGwVkXtOcMz5IrJKRNaLyEfhrjGW6YpVKlg0gFvGsoGgImIHngYuBIqA5SLytjFmw1HHZALPAOOMMbtEJNeSYmOUtoBVsOiY8paxsgU8HNhqjNlujPEArwLHbiL1A2C2MWYXgDFmf5hrVEo1gU5rb5mTBrCIVIhI+Yk+WnntTsDuo74uqn/saH2ALBH5UEQ+F5HrT1LrzSKyQkRWHDhwoJWlxQftglDBoi3gljnp/zVjTBqAiDwA7AP+AQhwHdDaLXUb+u0/9j2xAxgKjAaSgCUiUmCM2dxArbOAWQDDhg3T99ZNoF0QKlh0VmXLNPXP1kXGmDOO+vrPIrIUeKQV1y4Cjh653RnY28AxJcaYKqBKRD4GBgPHBbBquiPBqy1gFSzaAm6ZpvYB+0XkOhGxi4hNRK4D/K289nKgt4j0EBEncC3w9jHHvAWcIyIOEUkGzgA2tvK6Sqkg0xZwyzT1z9YPgOn1Hwb4rP6xFjPG+ETkNmA+YAeeN8asF5Hx9c/PNMZsFJF3gTVAAHjOGLOuNddVSgWfrivSMk0KYGPMTo4fodBqxph3gHeOeWzmMV8/Cjwa7GsrpYJHu7Napkl/tkSkj4gsEpF19V+fIiJ/DG1pSikV25r6vuEvwO8AL4AxZg11fbYqCmlrRanI0NQATjbGLDvmMV+wi1FKqXjS1AAuEZGe1I/TFZGrgOKQVaXCQscBK2Wtpo6CuJW6SQ79RGQPsIO6yRgqimlXhFLWamoAf2mMGSMiKYDNGFMRyqKUUioeNLULYoeIzAJGAJUhrEcppeJGUwO4L7CQuq6IHSLylIicHbqylFIq9jUpgI0xNcaY14wxVwKnAumALo6ulFKt0OT5gyJynog8A3wBJAJXh6wqpZSKA026CSciO4BVwGvAb+pXJ1NKKdUKTR0FMdgY09oF2JVSSh3lpAEsIr81xjwCPCQix43aN8b8KmSVKaVUjGusBXxk7d0VoS5EhZ/OhFPKWo1tSfTf+k/XGGNWhqEeFQY6A06pyNDUURBTRaRQRB4UkfyQVqSUUnGiqeOALwDOBw4As0Rkra4HHL2060GpyNDkccDGmH3GmBnAeOqGpE0MVVEqPLQrQilrNXVHjP4icl/9jhhPAYup28VYKaVUCzV1HPDfgFeAscaYY7eOV1FKuyKUslajASwidmCbMWZ6GOpRYXAkeLULQilrNdoFYYzxA9ki4gxDPUopFTeavCA78JmIvA18vQ6EMWZqSKpSSqk40NQA3lv/YQPSQleOCgftelAqMjQpgI0x94e6EBV+ehNOKWs1dTnKD6jfEfloxphRQa9IhY22hJWyVlO7IO466vNE4LuAL/jlqHDSFrBS1mrqVOTPj/r4zBjza+CM1l5cRMaJyCYR2Soi95zkuNNFxC8iV7X2mup/tAWslLWa2gXR5qgvbcAwoH1rLlw/vvhp4EKgCFguIm8bYzY0cNwUYH5rrqf+R1u+SkWGpnZBfM7/+oB9wE7gZ6289nBgqzFmO4CIvApcDmw45rhfAq8Dp7fyekopFVFO2gVR/9a/vTGmhzEmD7gfKKz/ODYom6sTsPuor4vqHzv6+p2A7wAzGzuZiNwsIitEZMWBAwdaWZpSSoVeY33AzwIeABE5F3gYeAEoA2a18toNdUAe+974CeDu+tl4J2WMmWWMGWaMGZaTk9PK0uKD39/o/1alVAg11gVhN8YcrP/8GmCWMeZ14HURWdXKaxcBXY76ujN1kz2ONgx4tf5mUVvgWyLiM8a82cprKzSAlbJaowEsIg5jjA8YDdzcjO9tzHKgt4j0APYA1wI/OPoAY0yPI5+LyN+BORq+weP1eq0uQam41liIvgJ8JCIlQA3wCYCI9KKuG6LFjDE+EbmNutENduB5Y8x6ERlf/3yj/b6qdTSAlbJWY5tyPiQii4AOwHvmf+OXbNSNTmgVY8w7wDvHPNZg8Bpjbmjt9dQ3aQArZa1GuxGMMQUNPLY5NOWocKqtrbW6BBUjAoGA1SVEpSbvCadij9vttroEFSM0gFtGAziOVVdXW12CihE6oqZlNIDjUKC+K7+qqqqRI5VqGg3gltEAjkM+X90vS2VlpcWVqFihAdwyGsBxqKKiAoDy8nKLK1GxQgO4ZTSA44zP56O6qq7lW1bWqqHcSn3N59PlwVtCAzjOHDx48OvPddEiFSwawC2jARxnjoRuwJHIV/v3W1yNihUawC2jARxn9u3bB4A/rR0HS0t1NpxqkWMX9defo5bRAI4zu3btAhH8GV0wxrB377EL0CnVuGNbvF6vx6JKopsGcJzZtWsXJKbhT8oC4Msvv7S4IhWNjm3xej3aAm4JDeA4U7hpM15XJoGkLBBhy5YtVpekopDH880Wr8/v16ntLaABHEfKy8sp3ruHQGoO2B2Y5DZs3LjR6rJUFDo2gOF/9xdU02kAx5H169cD4E+p27LJm9yW9es36B1s1WwNtXaLi4stqCS6aQDHkWXLliH2BPypuQD40ztSU1OtrWDVbA0F8O7duxs4Up2MBnCcMMawpKAAb2p7sNUtA+1L7wgiLF261OLqVLQ5di1pm9Tf4FXNogEcJzZv3sy+4mJ8mUftg+pw4U9rz6JF7x83rlOpEykrKztu7QeXzfDlzp3WFBTFNIDjxPz58xGbHW+bHt943JPdi+Livaxbt86iylS02b59+3GPueyGbdu26h/yZtIAjgM1NTXMf28Bnoyu4HB94zlfVnfEnsCcOXMsqk5Fm61btx73mMtuqKqu0ZEQzaQBHAfmzJlDVWUF3nYDjn/SnoA7uzcLFi7UXx7VJFu2bMEu33ws0W6+fk41nQZwjPN4PLz8yiv40zvgT2vX8DHtBxIwhldeeSXM1alotHHDepLs39wDzmU32AUKCwstqio6aQDHuNdee41DBw/i7jDkhMcYVyqe7N7MmTNHpyark6qoqGB30R4SHd/s67UJdE3z65DGZtIAjmF79+7lhRdewJvVHX96h5Me6+l0GgGbg6lTp+qNFHVCGzZsACDJfvzPSM80Lxs3rNeJPc2gARyjAoEAU6dNwxcAd9czGj3eJCRR03Eoq1evZt68eWGoUEWjNWvWYBdIchwfwH0zvdS6PQ3epFMN0wCOUa+++iorli+nptNQjDOlSd/jzemLP70DTzwxnR07doS4QhWNVq9aRfd0PzY5/rm+mXUroq1atSq8RUUxDeAYtHr1ap577jm8Wd3x5vZv+jeKUNPjPLzYmDjxXqqrq0NXpIo61dXVbCzcSP/Mhtf+zXQZOqQYvvji8zBXFr0sDWARGScim0Rkq4jc08Dz14nImvqPxSIy2Io6o0lRURETJkwk4EqjtsfZIA00VU7COJOp6nEeu4t288ADD2h/nvraqlWr8PsDDGxz4sXXB2bVsnrVqgZXS1PHsyyARcQOPA1cDAwAvi8ixw5U3QGcZ4w5BXgQmBXeKqPLgQMHuOPXv6aixk1lzzFgd7boPP70jtR2PZOCggKmTJlCIBBo/JtUzFu2bBkuO/TOOPEf5YFtvLg9XtauXRvGyqKXlS3g4cBWY8x2Y4wHeBW4/OgDjDGLjTGH6r8sADqHucaocfjwYX59512UlB6isvdYTFJGq87nze2Hu9NpLFiwgKeeekpHRsQ5YwwFiz+jf6aHhJOkRv9MLwk2KCgoCF9xUczKAO4EHL1+XVH9YyfyM+CEt+dF5GYRWSEiK+Jtu/Xi4mJ+ccutFO3ZQ1WvMQRS2gblvJ4Og/G0y2f27NlMmTJFuyPi2M6dO9m3/wCntj1510KiA/pnelj82adhqiy6WRnADXVONtjMEpELqAvgu090MmPMLGPMMGPMsJycnCCVGPm2b9/OL265lX37S6jqfVGj432bRQR3l+G4Ow7h3XffZcKECbrtTJxavHgxAEMaCeAjx+zZW6yTeprAygAuAo5aG5HOwHFb9IrIKcBzwOXGmNIw1RYVli5dym2//CWHq91U9v3WCacat4oInk6nUdt1BEuWLOH/br+dkpKS4F9HRbSPP/qQvHQ/Wa7Gu6JOy6kbjvbJJ5+EuqyoZ2UALwd6i0gPEXEC1wJvH32AiHQFZgM/MsZstqDGiBQIBHjxxRe5+557qDIuKvt+i0ByVkiv6W03gJqeo9i0eSs/u/FG1qxZE9Lrqcixb98+Nm3ewuk5tY0fDLRxBeiZ4eejDz8IcWXRz7IANsb4gNuA+cBG4DVjzHoRGS8i4+sPmwhkA8+IyCoRWWFRuRGjoqKCP/zhDzz//PN4s/Ko7HcpxpUWlmv72nSnsv+llLkNt99+B//5z3/05lwc+PjjjwEYltP0oWXD2tayZes29uzZE6qyYoKl44CNMe8YY/oYY3oaYx6qf2ymMWZm/ec3GmOyjDFD6j+GWVmv1b744gtuuOEnLClYSm3XEdTmnQt2R1hrCCRlUdHv23jSO/HUU09x9z33UFqqPUOxbNGihXRPD9AuuenDEYfn1oX1hx9+GKKqYoPOhIsCbrebp59+ml//+teUVnup6ndJ3dq+zZxkETQOJzW9RlPbdQTLl3/Oj2+44etWkoote/fuZdOmzZyRU9Os78tJCtArw8/7ixaGqLLYoAEc4TZs2MBNN9/Mv//9bzy5/anofzmB1AgY5SGCt90AKgdcRkXAxcSJE5k0aRJlZWVWV6aC6P333wfgjNzmz2wbkVvLtu072Kl7xZ2QBnCEqqqqYvr06dxy663s2ldCdZ+xuLudGfYuh8YEkjKp7HcJ7g6DeW/BQn74ox/x3nvvad9wDDDGsOC9+fTJ9NE2qfmzIYfnuhGBhQu1FXwiGsAR6JNPPuFH11/PG2+8gSenPxX538GfEcGTAG12PJ2HUjXgMsoCiUyaNIk777pLb8BEuW3btvHlrt2MbNe00Q/HynQZ8rO8LFqgf5BPRAM4ghQVFXH33fcwYcIESmsMVf0vxd1tRIvXdAi3QHIbqvp9i9puZ7Jy9VpuuOEG/va3v1Fb27JfYGWthQsXYhc4vRmjH441sl0txV/t/3ohd/VNGsARoLq6mmeffZYf//jHLPv8C2o7n05l/8sIpOZaXVrziQ1vbl2rvTqtCy+88ALX/fBHfPjhh9oKiiJ+v5+FC97jlGwPac6Wv25Dczw47bBgwYIgVhc7NIAtFAgEeO+99/jBdT/klVdeoTYrj4qBV+LtMAhs0f3SGGcKtT3Pp7rftyipCXDfffdx+x13sG3bNqtLU02wevVqSkoPMrJd66aeJzngtGw37y9aiNfrDVJ1sSO6f8uj2Jo1a/j5+PFMmjSJgx4bVf0vpbbHOZiEZKtLCyp/Wnsq+3+b2m5nsmZ9ITfeeCOPPvqojh2OcAsXLiTJQaOL7zTFme3dlFdUsnz58iBUFlsi65Z6HNizZw/PPvts3bhZVwo1Pc7Fl93TujG94VDfLeFtk4dr7yrmzpvHwkWL+OF113H11VfjcrmsrlAdxe128+EH7zO0bS1Oe+vPN6iNl1RnXaiPHDmy9SeMIRrAYVJRUcE//vEPXn/9dQLYcHc6DU+7gRE3rCykHC7cXc/Ak9sPX9EK/vrXv/LmW2/z85tvYsyYMdiivNslVixdupTqmlpG9g3OrhYOGwzPqeWzTz+hurqa5OTYepfXGvoTH2Jer5d///vfXHvt93nttdeoycqjYuB38XQcEl/hexSTmEFNr9FU972YAzWGSZMmcfPPf87KlSutLk0BixYtIt1Vt7h6sIzIdeP2eFmyZEnQzhkL4jMBwsAYw8cff8yfZ85kX3Fx3TY/+WMIJLexurSI4U/vQFX/b+Mo3cbWXV9wxx13MHLkSMaPH0/Xrl2tLi8u1dTUULBkMWfl1GIPYvOsT6aPrET44IP3GT16dPBOHOU0gENg8+bNPPnUU6xdswaTnEVNn7H40zvFdj9vS4nga9uLijbdce5bz5JlKygo+Anf+c4V/PjHPyY9Pd3qCuNKQUEBbo+XEbnBXXjfJnB62xo+WLpUuyGOol0QQVRaWsqUKVO4+ec/Z93GzdR2G0nlgMvrZrFp+J6czYGn42AqBn6X2uxevD57Nt//wXXMnj1bt0IKo08++YR0V12LNdhOz/Xg9fpYtmxZ0M8drTSAg8Dr9fLyyy/zg+uuY978+Xja5VM+8Cq8uf1A9H9xc5iEJNzdz6JqwGWU21KZMWMGP/nJT/n888+tLi3meb1eCpYs5tQ2tdhC0F7oneEjzak7ZRxNuyBaaeXKlUydOo3du3fhy+xKbe/hmER929xageRsqvuMw3F4F7uLlnPnnXcyatQobr31VrKzs60uLyatXr2a6ppaTusdnNEPx7IJDMmupWDJYnw+Hw6Hxo/+H2ih0tJSZs6cWTfFMjGN6t5j8GfqjaOgEsGX1Y2KjE44i9fw/ocfsWRJATfe+DMuv/xy/QUOsuXLl+OwwYCs0M1YG5zt5ZPiGgoLCxk4cGDIrhMt9P1xMxljWLRoET+6/noWLFqEu8NgKgZ8R8M3lGwOPJ1OozL/CiqdWTz55JPceutt7Nq1y+rKYsrypUvpk+HFFYTJFyeSn+VFBJ0VV08DuBnKysq4//77efDBB6mUFKoGXIGn89C4Hc8bbiYxg+reY6nJO4/N23fysxtvZPbs2QQCzV+rVn3T4cOH2b5zJ/lZoel+OCIlwZCX7ufzFXG/vSOgAdxky5cv58c33MCHH3+Mu9NQqvp9i0BSptVlxR8RfNk9qRhwBTVJucyYMYM777yLkpISqyuLamvXrgWgbwhGPxyrT7qHTZs34fGENuyjgQZwI4wxvPbaa/zmt7/lkFuo6v9tPB0H6+gGixlnMjW9L6S2+1msWrOWm26+mcLCQqvLilrr1q0jwQY90sMQwJlevF4fmzdvDvm1Ip2myEl4vV4eeeQRnnnmGbyZ3ajsdwmBZL0DHzFE8Ob0pbLfJRyq9vLLX/2KDz74wOqqotLmTZvokuonIQyJ0LM+5DWANYBPyO12c9dvfsO8efNwdxxCbc8LwJ5gdVmqAYHkNlT2uxS3K4v777+ff//731aXFFWMMWzbtpWuqeFZrzfDaUhziq4NjQZwg/x+Pw8++CCrV62ipsc5eDqdpjPZIpxJSKKqzzi8Wd15+umndQeGZigtLaW8opLOKf6wXE8EuqR42Lp1S1iuF8k0gI9hjGHGjBl8+umn1HY5A1/b3laXpJrKZqc271z8ae2ZPHkyK/ROe5Mc2Ty1Q3J4AhigfbKfvbppqwbwsT755BPeeustPO0G4m2fb3U5qrlsDqp7jcbnyuC+++6nsrLS6ooi3ldffQVA28TwBXC2y09FZRXV1dVhu2Yk0gA+is/n49lZszBJmbi7DLO6HNVSDhfV3c+msrKCV1991epqIt7+/fsByE4M33jqtvXXOnDgQNiuGYksDWARGScim0Rkq4jc08DzIiIz6p9fIyKnhbKe+fPns6eoiNpOQ3WYWZQLpLTF26YH/3rtNd1/rhEVFRW47BKU7YeaKjXBfH3teGZZyoiIHXgauBgYAHxfRAYcc9jFQO/6j5uBP4eyps8++wySMvDF+LRiW+V+nHtXY6vcb3UpIeVpfwpej4cvvvjC6lIiWnV1NUlhHuCT5KgL4KqqqvBeOMJY2cwbDmw1xmw3xniAV4HLjznmcuBFU6cAyBSRDqEqaOeXX+JNzIrpEQ+2yv1k7/qQH5yZR/auD2M6hANJmSBCUVGR1aVEtJqaGlx2E9ZrJtZfr6amJqzXjTRWBnAnYPdRXxfVP9bcYwAQkZtFZIWIrGhJv5Ixhn379mFcac3+3mjiKC/mkosv5pe33colF1+Mo7zY6pJCx2ZHXKlf3+VXkSO8cR+5rFxFpqFm5rGvS1OOqXvQmFnALIBhw4Y1+/UVEdq2zWGPu7y53xpVfOkdmDtvHgBz583D1/V8awsKJb8X466iXbt2VlcS0Ww2G4EwJ+KR69ntYex4jkBWBnAR0OWorzsDe1twTNCcOmQwBz74mFpjYrYbIpCaS2nX83l5yXZ8Xc8nkJprdUkhY686ACbAKaecYnUpEc3hcOANNO/nvWuq76RfN8Zn6q6nAWyd5UBvEekB7AGuBX5wzDFvA7eJyKvAGUCZMSZk75mHDh3K/PnzcRz6El+b7qG6jOUCqbl4Yjh4j0jYX0hCgpP8fB3PfTIZGRlUeQzNaXf8sE/rxu9WeuXra8czy/qAjTE+4DZgPrAReM0Ys15ExovI+PrD3gG2A1uBvwC3hLKmUaNG0SMvj6SipeAPz7x4FRr2siISDu3kRz/6IampqVaXE9EyMjLwBsAdvnkYVHo0gMHiccDGmHeMMX2MMT2NMQ/VPzbTGDOz/nNjjLm1/vlBxpiQzi11OBzcdeed4KnGtXspGL1VEJV8tSTvWkKnzp259tprra4m4rVp0waAg+7wxcGRax25drzS2QbHyM/P59prrsF5YDPOPboTb9TxuUnd/B4OXy2/u+cenE6n1RVFvE6d6gYW7a8JX3/s/ho7WZnpJCcnh+2akUj30mnAz3/+cyoqKpg7d27dfmQdh1hdkmoKv5eULQtw1B7ioUmTdNPHJjoSwPtq7EB4ut6+qrHTqXOXxg+McRrADRAR7rzzTjweDwsWLEC8Nbi7nAE2fcMQqcRdQcq297HXHOK+++/njDPOsLqkqJGRkUFGeipFlbVhuZ4xsLs6gQu69wjL9SKZJsoJ2Gw27r77bq6++mqc+zeSsnke4o3vlZsilb1sD2kb/0uyqWHSpEmcc845VpcUVUSEPn37s7MyPN01JbU2qjzQp0+fsFwvkmkAn4TD4eCWW25hwoQJuNyHSNvwNvZYnjkWbUwA595VJG95j66d2vOXWbMYMWKE1VVFpT59+rCn0oYnDCMhdlQ4vr5mvNMAboLRo0cz889/pn12Jsmb5uH6skCHqVnMVnOYlMJ3cO35ggvOv4CZf/4znTt3trqsqJWfn4/fwLby0PdKbj7swOVMoGfPniG/VqTTAG6inj178vzzf+XKK6/EuX8DaRvewl6xz+qy4o8J4CxeQ+qGt0iXGiZMmMDEiRNISkqyurKoNmjQIGwibDwU+mXRNpa5GDhoEAkJuseiBnAzJCUl8atf/YonnniCdpnJJBe+g2vnZ+ALz82LeGerPEDKxjm4ilZw9lkjefGFFxg9ejQSo9PGwyktLY1evXqy8XBo+4HLPcLuChuDBw8J6XWihQZwCwwZMoS//+1vXH311SSWbiF93WwS9heCCd+OAvFEvLW4dn5Kysb/0sYZYOLEiTzwwANxP4g/2E4ffgZbyhxUeUP3B23twbpW7/Dhw0N2jWiiAdxCSUlJ3HLLLTz33HMM7N+HxC8Xk7JxDrbK+N5iJahMgIT9haStn01i6VauvvpqXvrnPxg1apS2ekNgxIgRBAysOxi6roHVJU6yMjP0Blw9HQfcSnl5ecyYPp1Fixbx1NPPcHjjf/G26Ym781CMS9cgaCl72R6SipYj1Qc5ZfBgbr/9dnr00HGjoTRgwADSUlNYWeLmjHaeoJ/fF4A1h1ycO/pMbDqmHtAADgoRYcyYMYwcOZKXXnqJf/3rNZzrv6S23UA87QeBXW82NJWt5jCuouU4Du8mt117bvntfZx33nna4g0Du93OWWefw8eL3sUXqMQR5IzccCiBai86Tvso+mcoiJKTk7npppv45z//wfnnnotr7yrS172O48Bm7R9uhHhrcX1ZQMr6N0lzlzJ+/Hj+8eILnH/++Rq+YXTuuedS7a0Ly2D7/ICTpEQXw4bpjuNHaAs4BNq3b8+9907kqqu+y4wnn2RT4aeY/Ruo6Xw6/owGd1SKXwEfCV9tJGnfGvB7+Pa3v81PfvITsrKyrK4sLg0bNozkpESW7q/llOzgjXX3BWBFSSIjzhqJy+UK2nmjnQZwCOXn5zPzz3/mgw8+YObMZ9m/eT6+jM64O59OIDnOA8YYHAe3k7T3C6itYPgZI/jFL8bTvXt3qyuLa06nk7PPOZdPP3iPGwJVJATpPfKGQwlUeOrW3Fb/o10QISYijBo1in/+8x/84he/IN13iJQNb+La+Rnijc8dYW2V+0kpnEvS9o/o0TGHxx9/nClTJmv4RojRo0dT7YU1pcHrhij4yklKcpIuknQMbQGHidPp5JprrmHcuHG8+OKLvPHGm7gO7aCm/WC87QaALfb3xhJ3Ja6i5SQc3EFmVht+fvfdjB07Nu73BYs0Q4cOJSM9jSVfuRma0/puCI8fPi9J5Lwx5+n6zMfQFnCYZWRk8Mtf/pK//e15hg89jcSi5aStfwPHwZ2xuwOH34uz6HPS1s0muaKI66+/npdf+icXX3yxhm8EcjgcXDBqNCtLXdT4Wn8DdFWpkxofjBkzJgjVxRYNYIt069aNKVMm89hjj9GtfRuStr1P8ub5SE2Z1aUFjzE4Du4gbf0buIpXM+qC83jppZf46U9/Gvc7IUS6MWPG4PXDigOtb7Eu3uciOyuTU089NQiVxRbtgrDYsGHD+Otzz/H222/zl+eew77hDdy5+XW7cETx+GFbzSESdxVgLy8mr2dP7rj9YQYNGmR1WaqJ8vPz6dC+HYu/8nJOB3eLz1PpFVYfdHLldy/UdzsN0BZwBHA4HFx55ZW89M9/Mm7sWFz71pK2fjaOQ19aXVrzBXw4dy8nZf1bpPnLuf322/nLrFkavlFGRLhw7EVsOJTAIXfLuyGW7XfiD8DYsWODWF3s0ACOIG3atOGee+7h6aefpnvHdiRtXUTi1vejZicOe3kxaRvexLVvLeMuGsvLL73EFVdcoS2fKDVmzBiMgYKvWj5ud/FXiXTr0plevXoFsbLYoQEcgfLz83nuL7O46aabSKrYQ9q6N+pn00XoTTqfB9fOT0neNI92GclMnTqVe+65h8zMTKsrU63QtWtX+vbpTcH+xBZ9f0mNjc2HHVx40TidzXgCGsARyuFwcN111/H8838lv38fknZ+StLWRRE3dthesa+u1VuyhWuvvZYX/v53TjvtNKvLUkEy5sKx7Ci3U1zd/Kgo2F93A2/06NHBLitmaABHuK5duzJj+nRuvfVWXJV7Sd3wFvayPVaXBYEAzqLPSd40j/Zt0nj66acZP348iYktay2pyHTBBRcg0rJuiIL9SQzo348OHTqEoLLYoAEcBWw2G9/73vd4duZMurRvS/Lm+bh2L7NsgR9xV5Ky6R1cxasZd9FFPP/XvzJgwABLalGh1bZtWwYNGsSyA837w1pcZWNXhY0LRmnr92Q0gKNIr169eO4vf+Gyyy7DuW8dyZvfC/t2SPaKfaQV/pdkfwUTJ07knnvu0TG9Me6CC0axp9JGUWXTb6Yu21/XYj7vvPNCVVZMsCSARaSNiCwQkS31/x63Mo2IdBGRD0Rko4isF5H/s6LWSONyufj1r3/N3XffjbN6P2kb52CrORSWaycc2ETy5ndp37YNz86cqQurxIlzzz0XEWHZ/qZPylhekkh+/gByc3NDWFn0s6oFfA+wyBjTG1hU//WxfMCdxpj+wAjgVhHR97n1Lr74YmZMn05mkp3UjXOwlxeH7mLG4Ny9nMSdnzFs6FBmPTuTbt26he56KqJkZ2eTP2AAX5Q2rRviQE1d98O552rrtzFWBfDlwAv1n78AXHHsAcaYYmPMF/WfVwAbAV1M9yj5+fnMevZZOnfqSMqWBdgP7w7+RYzB9eUSXPvWctlllzFl8mTS0tKCfx0V0c4591x2VdjYX9N4ZByZvqw7XzTOqgBuZ4wphrqgBU76PkVEugOnAktPcszNIrJCRFYcOBA/G2Pm5uby5Izp9MzrQfLWRTgO7gjeyU2AxB0f4zxQyPe//33uuOMOnVQRp84++2wAVpU03g2xqtRFj+7d6NixY6jLinohC2ARWSgi6xr4uLyZ50kFXgduN8aUn+g4Y8wsY8wwY8ywnJyc1pYfVTIzM3niiWnkDxhA0vaPgjNMzRhcXxaQULqNn/70p9x88806mD6OderUiS6dO7G6kTWCq33C5sMOzhx5Vpgqi24hC2BjzBhjzMAGPt4CvhKRDgD1/+5v6BwikkBd+L5kjJkdqlpjQWpq6teLmqds/wBbdWmrzucsXvN1y/f666/X8FWcOfIsCg87cftPfMy6gwn4Td0W96pxVq2G9jbwY2By/b9vHXuA1P3G/xXYaIyZGt7yolNqaiqPPjKF8eN/AZvmYVwt7as1UHWQMWPGcNNNNwW1RhW9hg8fzmuvvUbh4QQGn2C/uHUHE0hOStRx4U1kVQBPBl4TkZ8Bu4DvAYhIR+A5Y8y3gLOAHwFrRWRV/ff93hjzjgX1Ro2cnBymTn2cF198Ebe75csIduzYkZtuugmbTYeKqzoDBw4kwWFnw8ETB/CGwy6GnHoaDoeudNsUlvxfMsaUAsdNkTHG7AW+Vf/5p4C+722Bbt26MWHCBKvLUDEmMTGR/PyBbNi+Ejh+hb4DNTb2VwvXDB0a/uKilDZvlFJNNuTUU9lVYaO6ga2KNh+ua88NHjw43GVFLQ1gpVSTDRw4EANsLTv+zfPmsrr+3x49eoS/sCilAayUarIBAwZgs9nY0kAAb61wkj9wkI4VbwYNYKVUkyUnJ9O9axd2VHwzgN1+KKq06eiHZtIAVko1S9/+A9hZ6frGBi1fVjgwBvr27WtdYVFIA1gp1Sx9+vSh3G0odf8vPnbWt4j79OljVVlRSQNYKdUsPXv2BGDPUesD7660k56WSnZ2tlVlRSUdLa2UapYjoxw+Lnaxv7YuhAvLnOT16alT1ptJA1gp1SxpaWnk9ejO8h07WX7gf3vFjRs8xLqiopQGsFKq2Z6d9Reqqqq+/lpESE9Pt7Ci6KQBrJRqtoSEBDIzM60uI+rpTTillLKIBrBSSllEA1gppSyiAayUUhbRAFZKKYtoACullEU0gJVSyiIawEopZRENYKWUsogGsFJKWUQDWCmlLCLm6GXtY4SIHAC+tLqOCNcWKLG6CBX19OeoaUqMMeOOfTAmA1g1TkRWGGOGWV2Him76c9Q62gWhlFIW0QBWSimLaADHr1lWF6Bigv4ctYL2ASullEW0BayUUhbRAFZKKYtoACtE5HwRmWN1HSr8RORXIrJRRF4K0fnvE5G7QnHuWKCbcioV324BLjbG7LC6kHikLeAYISLdRaRQRJ4TkXUi8pKIjBGRz0Rki4gMr/9YLCIr6//t28B5UkTkeRFZXn/c5Vb896jQE5GZQB7wtoj8oaHXXURuEJE3ReS/IrJDRG4TkV/XH1MgIm3qj7up/ntXi8jrIpLcwPV6isi7IvK5iHwiIv3C+18ceTSAY0svYDpwCtAP+AFwNnAX8HugEDjXGHMqMBGY1MA5/gC8b4w5HbgAeFREUsJQuwozY8x4YC91r3MKJ37dB1L3szQceAiorv8ZWgJcX3/MbGPM6caYwcBG4GcNXHIW8EtjzFDqfiafCc1/WfTQLojYssMYsxZARNYDi4wxRkTWAt2BDOAFEekNGCChgXOMBS47qt8uEehK3S+Vil0net0BPjDGVAAVIlIG/Lf+8bXU/bEHGCgifwIygVRg/tEnF5FUYCTwbxE58rArBP8dUUUDOLa4j/o8cNTXAepe6wep+2X6joh0Bz5s4BwCfNcYsymEdarI0+DrLiJn0PjPFcDfgSuMMatF5Abg/GPObwMOG2OGBLXqKKddEPElA9hT//kNJzhmPvBLqW+miMipYahLWa+1r3saUCwiCcB1xz5pjCkHdojI9+rPLyIyuJU1Rz0N4PjyCPCwiHwG2E9wzIPUdU2sEZF19V+r2Nfa130CsBRYQN29hoZcB/xMRFYD64G4v8GrU5GVUsoi2gJWSimLaAArpZRFNICVUsoiGsBKKWURDWCllLKIBrCKa/VrIKwXkTUisqp+4oFSYaEz4VTcEpEzgUuB04wxbhFpCzgtLkvFEW0Bq3jWASgxxrgBjDElxpi9IjJURD6qX7Vrvoh0EJEMEdl0ZAU5EXlFRG6ytHoV9XQihopb9QvEfAokAwuBfwGLgY+Ay40xB0TkGuAiY8xPReRC4AHqVpy7wRgzzqLSVYzQLggVt4wxlSIyFDiHuiUY/wX8ibrlFxfUL4tgB4rrj19Qv5bB00Dcr2OgWk9bwErVE5GrgFuBRGPMmQ08b6OuddwD+JYxZk2YS1QxRvuAVdwSkb71ayMfMYS6dY9z6m/QISIJIpJf//wd9c9/H3i+fuUvpVpMW8AqbtV3PzxJ3SLiPmArcDPQGZhB3fKdDuAJ6lq+bwHDjTEVIjIVqDDG3Bv+ylWs0ABWSimLaBeEUkpZRANYKaUsogGslFIW0QBWSimLaAArpZRFNICVUsoiGsBKKWWR/weXrwUHX88sPAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "