improved decision tree implementation

This commit is contained in:
MarRac 2024-06-09 21:34:39 +02:00
parent 21681b7ef1
commit 0f92ffd53f
4 changed files with 92 additions and 19 deletions

Binary file not shown.

View File

@ -1,5 +1,6 @@
from NN.neural_network import clear_text_area
from crop_protection_product import CropProtectionProduct
from area.constants import TILE_SIZE, DIRECTION_EAST, DIRECTION_SOUTH, DIRECTION_WEST, DIRECTION_NORTH
from area.constants import TILE_SIZE, DIRECTION_EAST, DIRECTION_SOUTH, DIRECTION_WEST, DIRECTION_NORTH, WIDTH
from area.field import fieldX, fieldY, tiles
import pygame
import time
@ -38,16 +39,19 @@ class Tractor:
self.image = pygame.image.load('resources/images/tractor_left.png').convert_alpha()
def work_on_field(self, tile, ground, plant1):
def work_on_field(self, screen, tile, ground, plant1):
results = []
if plant1 is None:
tile.randomizeContent()
# sprobuj zasadzic cos
print("Tarctor planted something")
results.append("Tarctor planted something")
elif plant1.growth_level == 100:
tile.plant = None
ground.nutrients_level -= 40
ground.water_level -= 40
print("Tractor collected something")
results.append("Tractor collected something")
else:
plant1.try_to_grow(50,50) #mozna dostosowac jeszcze
ground.nutrients_level -= 11
@ -61,6 +65,7 @@ class Tractor:
elif plant1.plant_type == self.spinosad.plant_type:
t = "Tractor used Spinosad"
print(t)
results.append(t)
ground.pest = False
if ground.weed:
# traktor pozbywa się chwastow
@ -71,13 +76,21 @@ class Tractor:
elif plant1.plant_type == self.metazachlor.plant_type:
t = "Tractor used Metazachlor"
print(t)
results.append(t)
ground.weed = False
if ground.water_level < plant1.water_requirements:
ground.water_level += 20
print("Tractor watered the plant")
results.append("Tractor watered the plant")
if ground.nutrients_level < plant1.nutrients_requirements:
ground.nutrients_level += 20
print("Tractor added some nutrients")
results.append("Tractor added some nutrients")
clear_text_area(screen, WIDTH-90, 100, 400, 100)
for idx, result in enumerate(results):
display_work_results(screen, result, (WIDTH-90, 100 + idx * 30))
@ -158,4 +171,11 @@ def do_actions(tractor, WIN, move_list):
pygame.display.update()
time.sleep(0.5)
#displays results of the "work_on_field" function next to the field:
def display_work_results(screen, text, position):
font = pygame.font.Font(None, 30)
displayed_text = font.render(text, 1, (255,255,255))
screen.blit(displayed_text, position)
pygame.display.update()

View File

@ -5,7 +5,7 @@ import pandas as pd
import joblib
from area.constants import WIDTH, HEIGHT, TILE_SIZE
from area.field import drawWindow
from area.tractor import Tractor, do_actions
from area.tractor import Tractor, do_actions, display_work_results
from area.field import tiles, fieldX, fieldY
from area.field import get_tile_coordinates, get_tile_index
from ground import Dirt
@ -107,6 +107,7 @@ def main():
#getting the name and type of the recognized plant:
p1.update_name(prediction)
#decission tree test:
if d1.pest:
pe = 1
@ -136,19 +137,71 @@ def main():
t3 = True
t4 = False
weather_n = random.randint(1, 4)
if weather_n == 1:
h1 = True
h2 = False
h3 = False
h4 = False
else:
h1 = False
if weather_n == 2:
h2 = True
h3 = False
h4 = False
else:
h2 = False
if weather_n == 3:
h3 = True
h4 = False
else:
h3 = False
h4 = True
season_n = random.randint(1,4)
if season_n == 1:
s1 = True
s2 = False
s3 = False
s4 = False
temp_n = random.randint(0,22)
else:
s1 = False
if season_n == 2:
s2 = True
s3 = False
s4 = False
temp_n = random.randint(0,22)
else:
s2 = False
if season_n == 3:
s3 = True
s4 = False
temp_n = random.randint(20,39)
else:
s3 = False
s4 = True
temp_n = random.randint(-20, 10)
anomaly_n = random.randint(1, 10)
if anomaly_n == 1:
a1 = True
else:
a1 = False
dane = {
'anomalies': [True],
'temp': [17],
'anomalies': [a1],
'temp': [temp_n],
'water': [d1.water_level],
'nutri': [d1.nutrients_level],
'pests': [pe],
'weeds': [we],
'ripeness': [p1.growth_level],
'season_autumn': [True], 'season_spring': [False], 'season_summer': [False], 'season_winter': [False],
'weather_heavyCloudy': [False], 'weather_partCloudy': [False], 'weather_precipitation': [False],
'weather_sunny': [True],
'season_autumn': [s1], 'season_spring': [s2], 'season_summer': [s3], 'season_winter': [s4],
'weather_heavyCloudy': [h1], 'weather_partCloudy': [h2], 'weather_precipitation': [h3],
'weather_sunny': [h4],
'type_cereal': [t1], 'type_fruit': [t2], 'type_none': [t3], 'type_vegetable': [t4]
}
df = pd.DataFrame(dane)
df.to_csv('model_data.csv', index=False)
@ -159,11 +212,11 @@ def main():
#work on field:
if predykcje == 'work':
tractor.work_on_field(goalTile, d1, p1)
tractor.work_on_field(WIN, goalTile, d1, p1)
#update the initial state for the next target:
istate = Istate(tile_x, tile_y, tractor.direction)
time.sleep(5)
time.sleep(2)
print("\n")