Neural_network #4
@ -62,15 +62,35 @@ def main():
|
||||
while run:
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
run = False
|
||||
|
||||
#small test of work_on_field method:
|
||||
run = False
|
||||
time.sleep(1)
|
||||
tile1 = tiles[0]
|
||||
p1 = Plant('wheat', 'cereal', random.randint(1,100), random.randint(1,100), random.randint(1,100))
|
||||
|
||||
# movement based on route-planning (test):
|
||||
|
||||
tractor.draw_tractor(WIN)
|
||||
time.sleep(1)
|
||||
if moves != False:
|
||||
do_actions(tractor, WIN, moves)
|
||||
|
||||
|
||||
#guessing the image under the tile:
|
||||
goalTile = tiles[tile_index]
|
||||
goalTile.display_photo()
|
||||
image_path = goalTile.photo
|
||||
image_tensor = load_image(image_path)
|
||||
prediction = guess_image(load_model(), image_tensor)
|
||||
print(f"The predicted image is: {prediction}")
|
||||
|
||||
|
||||
p1 = Plant('wheat', 'cereal', random.randint(1,100), random.randint(1,100), random.randint(1,100))
|
||||
goalTile.plant = p1
|
||||
d1 = Dirt(random.randint(1, 100), random.randint(1,100))
|
||||
d1.pests_and_weeds()
|
||||
tile1.ground=d1
|
||||
goalTile.ground=d1
|
||||
#getting the name and type of the recognized plant:
|
||||
p1.update_name(prediction)
|
||||
|
||||
#decission tree test:
|
||||
if d1.pest:
|
||||
pe = 1
|
||||
else:
|
||||
@ -117,25 +137,12 @@ def main():
|
||||
|
||||
model = joblib.load('model.pkl')
|
||||
nowe_dane = pd.read_csv('model_data.csv')
|
||||
|
||||
predykcje = model.predict(nowe_dane)
|
||||
|
||||
# movement based on route-planning (test):
|
||||
|
||||
tractor.draw_tractor(WIN)
|
||||
time.sleep(1)
|
||||
if moves != False:
|
||||
do_actions(tractor, WIN, moves)
|
||||
print(predykcje)
|
||||
if predykcje == 'work':
|
||||
tractor.work_on_field(tile1, d1, p1)
|
||||
|
||||
#guessing the image under the tile:
|
||||
tiles[tile_index].display_photo()
|
||||
image_path = tiles[tile_index].photo
|
||||
image_tensor = load_image(image_path)
|
||||
prediction = guess_image(load_model(), image_tensor)
|
||||
print(f"The predicted image is: {prediction}")
|
||||
#work on field:
|
||||
if predykcje == 'work':
|
||||
tractor.work_on_field(goalTile, d1, p1)
|
||||
time.sleep(30)
|
||||
print("\n")
|
||||
|
||||
|
@ -19,7 +19,23 @@ class Plant:
|
||||
else:
|
||||
print("Unable to grow due to bad condition of the ground")
|
||||
|
||||
# more properties
|
||||
def update_name(self, predicted_class):
|
||||
if predicted_class == "Apple":
|
||||
self.name = "Apple"
|
||||
self.plant_type = "fruit"
|
||||
|
||||
elif predicted_class == "Strawberry":
|
||||
self.name = "Strawberry"
|
||||
self.plant_type = "fruit"
|
||||
|
||||
# add init, getters,setters
|
||||
elif predicted_class == "Cucumber":
|
||||
self.name = "Cucumber"
|
||||
self.plant_type = "vegetable"
|
||||
|
||||
elif predicted_class == "Cauliflower":
|
||||
self.name = "Cauliflower"
|
||||
self.plant_type = "vegetable"
|
||||
|
||||
elif predicted_class == "Wheat":
|
||||
self.name = "Wheat"
|
||||
self.plant_type = "cereal"
|
Loading…
Reference in New Issue
Block a user