Neural_network #4
Binary file not shown.
Binary file not shown.
@ -6,6 +6,7 @@ from torchvision.transforms import Compose, Lambda, ToTensor
|
||||
import matplotlib.pyplot as plt
|
||||
from NN.model import *
|
||||
from PIL import Image
|
||||
import pygame
|
||||
|
||||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
|
||||
@ -83,6 +84,16 @@ def load_image(image_path):
|
||||
testImage = testImage.unsqueeze(0)
|
||||
return testImage
|
||||
|
||||
def display_image(screen, image_path, position):
|
||||
image = pygame.image.load(image_path)
|
||||
image = pygame.transform.scale(image, (250, 250))
|
||||
screen.blit(image, position)
|
||||
|
||||
def display_result(screen, position, predicted_class):
|
||||
font = pygame.font.Font(None, 30)
|
||||
displayed_text = font.render("The predicted image is: "+str(predicted_class), 1, (255,255,255))
|
||||
screen.blit(displayed_text, position)
|
||||
|
||||
def guess_image(model, image_tensor):
|
||||
with torch.no_grad():
|
||||
testOutput = model(image_tensor)
|
||||
@ -92,11 +103,6 @@ def guess_image(model, image_tensor):
|
||||
|
||||
|
||||
|
||||
# image_path = 'resources/images/plant_photos/pexels-dxt-73640.jpg'
|
||||
# image_tensor = load_image(image_path)
|
||||
# prediction = guess_image(load_model(), image_tensor)
|
||||
# print(f"The predicted image is: {prediction}")
|
||||
|
||||
#TEST - loading the image and getting results:
|
||||
# testImage_path = 'resources/images/plant_photos/1c76aa4d-11f4-47d1-8bdd-2cb78deeeccf.jpg'
|
||||
# testImage = Image.open(testImage_path)
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -12,10 +12,12 @@ from ground import Dirt
|
||||
from plant import Plant
|
||||
from bfs import graphsearch, Istate, succ
|
||||
from astar import a_star
|
||||
from NN.neural_network import load_model, load_image, guess_image
|
||||
from NN.neural_network import load_model, load_image, guess_image, display_image, display_result
|
||||
from PIL import Image
|
||||
|
||||
WIN = pygame.display.set_mode((WIDTH, HEIGHT))
|
||||
pygame.init()
|
||||
WIN_WIDTH = WIDTH + 300
|
||||
WIN = pygame.display.set_mode((WIN_WIDTH, HEIGHT))
|
||||
pygame.display.set_caption('Intelligent tractor')
|
||||
|
||||
|
||||
@ -76,10 +78,15 @@ def main():
|
||||
|
||||
#guessing the image under the tile:
|
||||
goalTile = tiles[tile_index]
|
||||
goalTile.display_photo()
|
||||
image_path = goalTile.photo
|
||||
display_image(WIN, goalTile.photo, (WIDTH-20 , 300)) #displays photo next to the field
|
||||
pygame.display.update()
|
||||
|
||||
image_tensor = load_image(image_path)
|
||||
prediction = guess_image(load_model(), image_tensor)
|
||||
|
||||
display_result(WIN, (WIDTH - 50 , 600), prediction) #display text under the photo
|
||||
pygame.display.update()
|
||||
print(f"The predicted image is: {prediction}")
|
||||
|
||||
|
||||
@ -144,7 +151,7 @@ def main():
|
||||
#work on field:
|
||||
if predykcje == 'work':
|
||||
tractor.work_on_field(goalTile, d1, p1)
|
||||
time.sleep(30)
|
||||
time.sleep(50)
|
||||
print("\n")
|
||||
|
||||
|
||||
|
@ -52,12 +52,3 @@ class Tile:
|
||||
self.image = "resources/images/rock_dirt.png"
|
||||
|
||||
|
||||
def display_photo(self):
|
||||
image_path = self.photo
|
||||
img = Image.open(image_path)
|
||||
plt.ion()
|
||||
plt.imshow(img)
|
||||
plt.axis('off')
|
||||
plt.show()
|
||||
time.sleep(5)
|
||||
plt.close()
|
||||
|
Loading…
Reference in New Issue
Block a user