Neural_network #4

Merged
s481894 merged 12 commits from Neural_network into master 2024-06-04 16:59:03 +02:00
8 changed files with 22 additions and 18 deletions
Showing only changes of commit 57c6facea1 - Show all commits

View File

@ -6,6 +6,7 @@ from torchvision.transforms import Compose, Lambda, ToTensor
import matplotlib.pyplot as plt
from NN.model import *
from PIL import Image
import pygame
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
@ -83,6 +84,16 @@ def load_image(image_path):
testImage = testImage.unsqueeze(0)
return testImage
def display_image(screen, image_path, position):
image = pygame.image.load(image_path)
image = pygame.transform.scale(image, (250, 250))
screen.blit(image, position)
def display_result(screen, position, predicted_class):
font = pygame.font.Font(None, 30)
displayed_text = font.render("The predicted image is: "+str(predicted_class), 1, (255,255,255))
screen.blit(displayed_text, position)
def guess_image(model, image_tensor):
with torch.no_grad():
testOutput = model(image_tensor)
@ -92,11 +103,6 @@ def guess_image(model, image_tensor):
# image_path = 'resources/images/plant_photos/pexels-dxt-73640.jpg'
# image_tensor = load_image(image_path)
# prediction = guess_image(load_model(), image_tensor)
# print(f"The predicted image is: {prediction}")
#TEST - loading the image and getting results:
# testImage_path = 'resources/images/plant_photos/1c76aa4d-11f4-47d1-8bdd-2cb78deeeccf.jpg'
# testImage = Image.open(testImage_path)

View File

@ -12,10 +12,12 @@ from ground import Dirt
from plant import Plant
from bfs import graphsearch, Istate, succ
from astar import a_star
from NN.neural_network import load_model, load_image, guess_image
from NN.neural_network import load_model, load_image, guess_image, display_image, display_result
from PIL import Image
WIN = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.init()
WIN_WIDTH = WIDTH + 300
WIN = pygame.display.set_mode((WIN_WIDTH, HEIGHT))
pygame.display.set_caption('Intelligent tractor')
@ -76,10 +78,15 @@ def main():
#guessing the image under the tile:
goalTile = tiles[tile_index]
goalTile.display_photo()
image_path = goalTile.photo
display_image(WIN, goalTile.photo, (WIDTH-20 , 300)) #displays photo next to the field
pygame.display.update()
image_tensor = load_image(image_path)
prediction = guess_image(load_model(), image_tensor)
display_result(WIN, (WIDTH - 50 , 600), prediction) #display text under the photo
pygame.display.update()
print(f"The predicted image is: {prediction}")
@ -144,7 +151,7 @@ def main():
#work on field:
if predykcje == 'work':
tractor.work_on_field(goalTile, d1, p1)
time.sleep(30)
time.sleep(50)
print("\n")

View File

@ -52,12 +52,3 @@ class Tile:
self.image = "resources/images/rock_dirt.png"
def display_photo(self):
image_path = self.photo
img = Image.open(image_path)
plt.ion()
plt.imshow(img)
plt.axis('off')
plt.show()
time.sleep(5)
plt.close()