Neural_network #4

Merged
s481894 merged 12 commits from Neural_network into master 2024-06-04 16:59:03 +02:00
16 changed files with 60 additions and 23 deletions
Showing only changes of commit 9667655a2a - Show all commits

Binary file not shown.

View File

@ -3,16 +3,26 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
class Neural_Network_Model(nn.Module): class Conv_Neural_Network_Model(nn.Module):
def __init__(self, num_classes=5,hidden_layer1 = 100,hidden_layer2 = 100): def __init__(self, num_classes=5,hidden_layer1 = 512,hidden_layer2 = 256):
super(Neural_Network_Model, self).__init__() super(Conv_Neural_Network_Model, self).__init__()
self.fc1 = nn.Linear(150*150*3,hidden_layer1)
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(128*12*12,hidden_layer1)
self.fc2 = nn.Linear(hidden_layer1,hidden_layer2) self.fc2 = nn.Linear(hidden_layer1,hidden_layer2)
self.out = nn.Linear(hidden_layer2,num_classes) self.out = nn.Linear(hidden_layer2,num_classes)
# two hidden layers
def forward(self, x): def forward(self, x):
x = x.view(-1, 150*150*3) x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = x.view(-1, 128*12*12) #<----flattening the image
x = self.fc1(x) x = self.fc1(x)
x = torch.relu(x) x = torch.relu(x)
x = self.fc2(x) x = self.fc2(x)

View File

@ -4,7 +4,7 @@ from torch.utils.data import DataLoader
from torchvision import datasets, transforms, utils from torchvision import datasets, transforms, utils
from torchvision.transforms import Compose, Lambda, ToTensor from torchvision.transforms import Compose, Lambda, ToTensor
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from .model import * from model import *
from PIL import Image from PIL import Image
device = torch.device('cuda') device = torch.device('cuda')
@ -29,7 +29,7 @@ test_set = datasets.ImageFolder(root='resources/test', transform=data_transforme
#function for training model #function for training model
def train(model, dataset, iter=100, batch_size=64): def train(model, dataset, iter=100, batch_size=64):
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
criterion = nn.NLLLoss() criterion = nn.NLLLoss()
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model.train() model.train()
@ -56,12 +56,12 @@ def accuracy(model, dataset):
return correct.float() / len(dataset) return correct.float() / len(dataset)
model = Neural_Network_Model() model = Conv_Neural_Network_Model()
model.to(device) model.to(device)
#loading the already saved model: #loading the already saved model:
model.load_state_dict(torch.load('model.pth')) # model.load_state_dict(torch.load('model.pth'))
model.eval() # model.eval()
#training the model: #training the model:
# train(model, train_set) # train(model, train_set)
@ -69,12 +69,10 @@ model.eval()
# torch.save(model.state_dict(), 'model.pth') # torch.save(model.state_dict(), 'model.pth')
#TEST - loading the image and getting results:
#testImage_path = 'resources/images/plant_photos/pexels-dxt-73640.jpg'
def load_model(): def load_model():
model = Neural_Network_Model() model = Conv_Neural_Network_Model()
model.load_state_dict(torch.load('model.pth')) model.load_state_dict(torch.load('CNN_model.pth'))
model.eval() model.eval()
return model return model
@ -94,3 +92,23 @@ def guess_image(model, image_tensor):
# image_path = 'resources/images/plant_photos/pexels-dxt-73640.jpg'
# image_tensor = load_image(image_path)
# prediction = guess_image(load_model(), image_tensor)
# print(f"The predicted image is: {prediction}")
#TEST - loading the image and getting results:
testImage_path = 'resources/images/plant_photos/pexels-justus-menke-3490295-5213970.jpg'
testImage = Image.open(testImage_path)
testImage = data_transformer(testImage)
testImage = testImage.unsqueeze(0)
testImage = testImage.to(device)
model.load_state_dict(torch.load('CNN_model.pth'))
model.to(device)
model.eval()
testOutput = model(testImage)
_, predicted = torch.max(testOutput, 1)
predicted_class = train_set.classes[predicted.item()]
print(f'The predicted class is: {predicted_class}')

Binary file not shown.

View File

@ -3,16 +3,17 @@ import time
import random import random
import pandas as pd import pandas as pd
import joblib import joblib
from area.constants import WIDTH, HEIGHT, TILE_SIZE from area.constants import WIDTH, HEIGHT, TILE_SIZE
from area.field import drawWindow from area.field import drawWindow
from area.tractor import Tractor, do_actions from area.tractor import Tractor, do_actions
from area.field import tiles, fieldX, fieldY from area.field import tiles, fieldX, fieldY
from area.field import get_tile_coordinates from area.field import get_tile_coordinates, get_tile_index
from ground import Dirt from ground import Dirt
from plant import Plant from plant import Plant
from bfs import graphsearch, Istate, succ from bfs import graphsearch, Istate, succ
from astar import a_star from astar import a_star
from NN.neural_network import load_model, load_image, guess_image
WIN = pygame.display.set_mode((WIDTH, HEIGHT)) WIN = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption('Intelligent tractor') pygame.display.set_caption('Intelligent tractor')
@ -23,7 +24,7 @@ def main():
pygame.display.update() pygame.display.update()
#getting coordinates of our "goal tile": #getting coordinates of our "goal tile":
tile_index=127 tile_index = get_tile_index()
tile_x, tile_y = get_tile_coordinates(tile_index) tile_x, tile_y = get_tile_coordinates(tile_index)
if tile_x is not None and tile_y is not None: if tile_x is not None and tile_y is not None:
print(f"Coordinates of tile {tile_index} are: ({tile_x}, {tile_y})") print(f"Coordinates of tile {tile_index} are: ({tile_x}, {tile_y})")
@ -128,6 +129,13 @@ def main():
print(predykcje) print(predykcje)
if predykcje == 'work': if predykcje == 'work':
tractor.work_on_field(tile1, d1, p1) tractor.work_on_field(tile1, d1, p1)
#guessing the image under the tile:
tiles[tile_index].display_photo()
image_path = tiles[tile_index].photo
image_tensor = load_image(image_path)
prediction = guess_image(load_model(), image_tensor)
print(f"The predicted image is: {prediction}")
time.sleep(30) time.sleep(30)
print("\n") print("\n")

Binary file not shown.

View File

@ -2,6 +2,7 @@ import random
import os import os
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from PIL import Image
# path to plant images folder (used in randomize_photo function) # path to plant images folder (used in randomize_photo function)
folder_path = "resources/images/plant_photos" folder_path = "resources/images/plant_photos"
@ -50,9 +51,9 @@ class Tile:
self.image = "resources/images/rock_dirt.png" self.image = "resources/images/rock_dirt.png"
def displayPhoto(self): def display_photo(self):
img = self.photo image_path = self.photo
img = img / 2 + 0.5 # unnormalize img = Image.open(image_path)
npimg = img.numpy() plt.imshow(img)
plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.axis('off')
plt.show() plt.show()