Neural_network #4
BIN
source/NN/__pycache__/model.cpython-311.pyc
Normal file
BIN
source/NN/__pycache__/model.cpython-311.pyc
Normal file
Binary file not shown.
@ -1,4 +1,6 @@
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Neural_Network_Model(nn.Module):
|
||||
@ -16,5 +18,4 @@ class Neural_Network_Model(nn.Module):
|
||||
x = self.fc2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.out(x)
|
||||
F.log_softmax(x, dim=-1)
|
||||
return x
|
||||
return F.log_softmax(x, dim=-1)
|
||||
|
@ -1,15 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import datasets, transforms
|
||||
from torchvision import datasets, transforms, utils
|
||||
from torchvision.transforms import Compose, Lambda, ToTensor
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from model import *
|
||||
|
||||
device = torch.device('cuda')
|
||||
|
||||
#data transform to tensors:
|
||||
data_transformer = transforms.Compose
|
||||
([
|
||||
data_transformer = transforms.Compose([
|
||||
transforms.Resize((150, 150)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
||||
@ -46,6 +47,9 @@ def train(model, dataset, iter=100, batch_size=64):
|
||||
loss = criterion(output, labels.to(device))
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if epoch % 10 == 0:
|
||||
print('epoch: %3d loss: %.4f' % (epoch, loss))
|
||||
|
||||
#function for getting accuracy
|
||||
def accuracy(model, dataset):
|
||||
model.eval()
|
||||
@ -57,6 +61,9 @@ def accuracy(model, dataset):
|
||||
return correct.float() / len(dataset)
|
||||
|
||||
|
||||
|
||||
|
||||
model = Neural_Network_Model()
|
||||
model.to(device)
|
||||
train(model, train_set)
|
||||
print(accuracy(model, test_set))
|
||||
|
Loading…
Reference in New Issue
Block a user