import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision import datasets, transforms, utils from torchvision.transforms import Compose, Lambda, ToTensor import matplotlib.pyplot as plt from NN.model import * from PIL import Image import pygame device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') #data transform to tensors: data_transformer = transforms.Compose([ transforms.Resize((100, 100)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5 ), (0.5, 0.5, 0.5)) ]) #loading data: train_set = datasets.ImageFolder(root='resources/train', transform=data_transformer) test_set = datasets.ImageFolder(root='resources/test', transform=data_transformer) #to mozna nawet przerzucic do funkcji train: # train_loader = DataLoader(train_set, batch_size=64, shuffle=True) #test_loader = DataLoader(test_set, batch_size=32, shuffle=True) #function for training model def train(model, dataset, iter=100, batch_size=64): optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criterion = nn.NLLLoss() train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) model.train() for epoch in range(iter): for inputs, labels in train_loader: optimizer.zero_grad() output = model(inputs.to(device)) loss = criterion(output, labels.to(device)) loss.backward() optimizer.step() if epoch % 10 == 0: print('epoch: %3d loss: %.4f' % (epoch, loss)) #function for getting accuracy def accuracy(model, dataset): model.eval() with torch.no_grad(): correct = sum([ (model(inputs.to(device)).argmax(dim=1) == labels.to(device)).sum() for inputs, labels in DataLoader(dataset, batch_size=64, shuffle=True) ]) return correct.float() / len(dataset) # model = Conv_Neural_Network_Model() # model.to(device) #loading the already saved model: # model.load_state_dict(torch.load('CNN_model.pth')) # model.eval() # #training the model: # train(model, train_set) # print(f"Accuracy of the network is: {100*accuracy(model, test_set)}%") # torch.save(model.state_dict(), 'CNN_model.pth') def load_model(): model = Conv_Neural_Network_Model() model.load_state_dict(torch.load('CNN_model.pth', map_location=torch.device('cpu'))) model.eval() return model def load_image(image_path): testImage = Image.open(image_path).convert('RGB') testImage = data_transformer(testImage) testImage = testImage.unsqueeze(0) return testImage def display_image(screen, image_path, position): image = pygame.image.load(image_path) image = pygame.transform.scale(image, (250, 250)) screen.blit(image, position) def display_result(screen, position, predicted_class): font = pygame.font.Font(None, 30) displayed_text = font.render("The predicted image is: "+str(predicted_class), 1, (255,255,255)) screen.blit(displayed_text, position) def guess_image(model, image_tensor): with torch.no_grad(): testOutput = model(image_tensor) _, predicted = torch.max(testOutput, 1) predicted_class = train_set.classes[predicted.item()] return predicted_class #TEST - loading the image and getting results: # testImage_path = 'resources/images/plant_photos/1c76aa4d-11f4-47d1-8bdd-2cb78deeeccf.jpg' # testImage = Image.open(testImage_path) # testImage = data_transformer(testImage) # testImage = testImage.unsqueeze(0) # testImage = testImage.to(device) # model.load_state_dict(torch.load('CNN_model.pth')) # model.to(device) # model.eval() # testOutput = model(testImage) # _, predicted = torch.max(testOutput, 1) # predicted_class = train_set.classes[predicted.item()] # print(f'The predicted class is: {predicted_class}')