from area.constants import TILE_SIZE, ROWS import copy import heapq from area.field import tiles, fieldX, fieldY from bfs import get_moves class Node: def __init__(self, priority, x, y, direction, parent, action, cost=0): self.x = x self.y = y self.direction = direction self.action = action self.parent = parent self.cost = cost self.priority = priority def __int__(self): return self.priority # getters and setters: def get_parent(self): return self.parent def set_parent(self, _parent): self.parent = _parent def get_action(self): return self.action def set_action(self, _action): self.parent = _action def get_x(self): return self.x def set_x(self, _x): self.x = _x def get_y(self): return self.y def set_y(self, _y): self.y = _y def get_direction(self): return self.direction def set_direction(self, _direction): self.parent = _direction def get_cost(self): return self.cost def set_cost(self, _cost): self.cost = _cost def get_priority(self): return self.priority def set_priority(self, _priority): self.priority = _priority def __lt__(self, other): return self.get_priority() < other.get_priority() def copy(self): return copy.copy(self) def goal_test(elem, goalstate): if elem.get_x() == goalstate[0] and elem.get_y() == goalstate[1]: return True else: return False def tile_cost(tile): if tile.image == "resources/images/sampling.png": return 100 if tile.image == "resources/images/rock_dirt.png": return 500 else: return 1 def heuristic(current_x, current_y, end_x, end_y): return abs(end_x - current_x) + abs(end_y - current_y) # State as a tuple (x,y,direction) # actions(string): move, rotate_to_left, rotate_to_right # main search function: def a_star(istate, succ, goaltest, tractor): fringe = [] explored = set() node = Node(0, istate.get_x(), istate.get_y(), istate.get_direction(), None, None, 0) heapq.heappush(fringe, node) while True: if not fringe: return False elem = heapq.heappop(fringe) temp = copy.copy(elem) if goal_test(elem, goaltest) is True: # jesli True zwroc ciag akcji return get_moves(elem) explored.add(elem) for (action, state) in succ(temp, tractor): fringe_tuple = [] explored_tuple = [] for node in fringe: fringe_tuple.append((node.get_x(), node.get_y(), node.get_direction())) for node in explored: explored_tuple.append((node.get_x(), node.get_y(), node.get_direction())) tile = int((temp.get_y() - fieldY) / TILE_SIZE) * ROWS + int((temp.get_x() - fieldX) / TILE_SIZE) cost = temp.cost + tile_cost(tiles[tile]) priority = cost + heuristic(state[0], state[1], goaltest[0], goaltest[1]) x = Node(priority, state[0], state[1], state[2], elem, action, cost) if state not in fringe_tuple and state not in explored_tuple: heapq.heappush(fringe, x) elif state in fringe_tuple and elem.get_priority() < priority: elem.set_priority(priority)