ladowanie pola z pliku GA, rozpoznawanie zdjec na polu, decyzja o podlaniu
This commit is contained in:
parent
0becd1b1f6
commit
51a5b13669
21
App.py
21
App.py
@ -10,6 +10,7 @@ import Ui
|
||||
import BFS
|
||||
import AStar
|
||||
import neuralnetwork
|
||||
import json
|
||||
|
||||
|
||||
bfs1_flag=False
|
||||
@ -20,8 +21,9 @@ Astar2 = False
|
||||
if bfs3_flag or Astar or Astar2:
|
||||
Pole.stoneFlag = True
|
||||
TreeFlag=False
|
||||
nnFlag=True
|
||||
nnFlag=False
|
||||
newModel=False
|
||||
finalFlag = True
|
||||
|
||||
pygame.init()
|
||||
show_console=True
|
||||
@ -43,7 +45,15 @@ def init_demo(): #Demo purpose
|
||||
old_info=""
|
||||
traktor.draw_tractor()
|
||||
time.sleep(2)
|
||||
if not finalFlag:
|
||||
pole.randomize_colors(nnFlag)
|
||||
else:
|
||||
population = 120
|
||||
iterat = 2500
|
||||
roulette = True
|
||||
with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||
garden_data = json.load(file)
|
||||
pole.setPlantsByList(garden_data)
|
||||
traktor.draw_tractor()
|
||||
start_flag=True
|
||||
while True:
|
||||
@ -128,11 +138,16 @@ def init_demo(): #Demo purpose
|
||||
print_to_console("sieć nuronowa nauczona")
|
||||
print('model został wygenerowany')
|
||||
else:
|
||||
model = neuralnetwork.loadModel('model.pth')
|
||||
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||
print_to_console("model został załądowny")
|
||||
testset = neuralnetwork.getDataset(False)
|
||||
print(neuralnetwork.accuracy(model, testset))
|
||||
traktor.snake_move_predict_plant(pole, model)
|
||||
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Fertilizer'], actions=[traktor.fertilize_slot])
|
||||
if(finalFlag):
|
||||
pass
|
||||
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||
Tractor.drzewo.treeLearn()
|
||||
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Decision'], actions=[traktor.irigate_slot_NN])
|
||||
start_flag=False
|
||||
# demo_move()
|
||||
old_info=get_info(old_info)
|
||||
|
@ -8,7 +8,7 @@ class Drzewo:
|
||||
self.tree=self.treeLearn()
|
||||
|
||||
def treeLearn(self):
|
||||
csvdata=pandas.read_csv('Data/dataTree.csv')
|
||||
csvdata=pandas.read_csv('Data/dataTree2.csv')
|
||||
#csvdata = pandas.read_csv('Data/dataTree2.csv')
|
||||
x=csvdata[atributes]
|
||||
decision=csvdata['action']
|
||||
|
22
Image.py
22
Image.py
@ -80,3 +80,25 @@ def getRandomImageFromDataBase():
|
||||
image = pygame.image.load(imgPath)
|
||||
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||
return image, label, imgPath
|
||||
|
||||
def getSpedifiedImageFromDatabase(label):
|
||||
folderPath = f"dataset/test/{label}"
|
||||
files = os.listdir(folderPath)
|
||||
random_image = random.choice(files)
|
||||
imgPath = os.path.join(folderPath, random_image)
|
||||
|
||||
while imgPath in imagePathList:
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
quit()
|
||||
label = random.choice(neuralnetwork.labels)
|
||||
folderPath = f"dataset/test/{label}"
|
||||
files = os.listdir(folderPath)
|
||||
random_image = random.choice(files)
|
||||
imgPath = os.path.join(folderPath, random_image)
|
||||
|
||||
imagePathList.append(imgPath)
|
||||
|
||||
image = pygame.image.load(imgPath)
|
||||
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||
return image, label, imgPath
|
||||
|
8
Pole.py
8
Pole.py
@ -62,6 +62,14 @@ class Pole:
|
||||
continue
|
||||
else:
|
||||
self.slot_dict[coordinates].set_random_plant(nn)
|
||||
def setPlantsByList(self, plantList):
|
||||
pygame.display.update()
|
||||
time.sleep(3)
|
||||
for coordinates in self.slot_dict:
|
||||
if(coordinates==(0,0)):
|
||||
continue
|
||||
else:
|
||||
self.slot_dict[coordinates].set_specifided_plant(plantList[coordinates[1]][coordinates[0]])
|
||||
|
||||
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
|
||||
self.get_slot_from_cord(coordinates).color_change(color)
|
||||
|
7
Slot.py
7
Slot.py
@ -50,6 +50,11 @@ class Slot:
|
||||
self.plant=Roslina.Roslina(self.label)
|
||||
self.set_image()
|
||||
|
||||
def set_specifided_plant(self, plant):
|
||||
self.plant_image, self.label, self.imagePath = self.specified_plant_dataset(plant)
|
||||
self.plant=Roslina.Roslina(self.label)
|
||||
self.set_image()
|
||||
|
||||
def set_image(self):
|
||||
if self.plant_image is None:
|
||||
self.plant_image = self.image_loader.return_random_plant()
|
||||
@ -75,6 +80,8 @@ class Slot:
|
||||
return self.image_loader.return_random_plant()
|
||||
def random_plant_dataset(self):
|
||||
return Image.getRandomImageFromDataBase()
|
||||
def specified_plant_dataset(self, plant):
|
||||
return Image.getSpedifiedImageFromDatabase(plant)
|
||||
|
||||
def return_plant(self):
|
||||
return self.plant
|
||||
|
24
Tractor.py
24
Tractor.py
@ -30,6 +30,7 @@ class Tractor:
|
||||
DIRECTION_SOUTH = 'S'
|
||||
DIRECTION_WEST = 'W'
|
||||
DIRECTION_EAST = 'E'
|
||||
|
||||
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
|
||||
self.tractor_images = {
|
||||
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
|
||||
@ -193,8 +194,7 @@ class Tractor:
|
||||
self.turn_left()
|
||||
print("podlanych slotów: ", str(counter))
|
||||
|
||||
def snake_move_predict_plant(self, pole, model):
|
||||
headers=['Coords','Real plant','Predicted plant','Result','Fertilizer']
|
||||
def snake_move_predict_plant(self, pole, model, headers, actions = None):
|
||||
print(format_string_nn.format(*headers))
|
||||
initPos = (self.slot.x_axis, self.slot.y_axis)
|
||||
count = 0
|
||||
@ -207,9 +207,11 @@ class Tractor:
|
||||
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
|
||||
|
||||
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
|
||||
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||
# print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||
for a in actions:
|
||||
a(predictedLabel)
|
||||
if self.slot.label != predictedLabel:
|
||||
self.slot.mark_visited()
|
||||
# self.slot.mark_visited()
|
||||
count += 1
|
||||
self.move_forward(pole, False)
|
||||
if i % 2 == 0 and i != dCon.NUM_Y - 1:
|
||||
@ -220,7 +222,19 @@ class Tractor:
|
||||
self.turn_left()
|
||||
self.move_forward(pole, False)
|
||||
self.turn_left()
|
||||
print(f"Dobrze nawiezionych roślin: {20*12-count}, źle nawiezionych roślin: {count}")
|
||||
print(f"Dobrze rozpoznanych roślin: {20*12-count}, źle rozpoznanych roślin: {count}")
|
||||
|
||||
def fertilize_slot(self, predictedLabel):
|
||||
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||
if self.slot.label != predictedLabel:
|
||||
self.slot.mark_visited()
|
||||
|
||||
def irigate_slot_NN(self, predictedLabel):
|
||||
attributes=self.get_attributes()
|
||||
decision = drzewo.makeDecision(attributes)
|
||||
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",decision))
|
||||
condition.cycle()
|
||||
self.waterLevel = random.randint(0, 100)
|
||||
|
||||
def snake_move(self,pole,x,y):
|
||||
next_slot_coordinates=(x,y)
|
||||
|
@ -77,7 +77,7 @@ def saveModel(model, path):
|
||||
def loadModel(path):
|
||||
print("Loading model")
|
||||
model = getModel()
|
||||
model.load_state_dict(torch.load(path))
|
||||
model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # musiałem tutaj dodać to ładowanie z mapowaniem na cpu bo u mnie CUDA nie działa wy pewnie możecie to usunąć
|
||||
return model
|
||||
|
||||
def trainNewModel(n_iter=100, batch_size=256):
|
||||
|
Loading…
Reference in New Issue
Block a user