Compare commits

..

No commits in common. "master" and "cleaning" have entirely different histories.

48 changed files with 70 additions and 12910 deletions

6
.gitignore vendored
View File

@ -1,5 +1 @@
__pycache__/
.idea/
tree.png
dataset/
dataset.zip
__pycache__/

284
AStar.py
View File

@ -1,284 +0,0 @@
"""
f(n) = g(n) + h(n)
g(n) = dotychczasowy koszt -> dodać currentCost w Node lub brać koszt na nowo przy oddtawrzaniu ścieżki
h(n) = abs(state['x'] - goalTreassure[0]) + abs(state['y'] - goalTreassure[1]) -> odległość Manhatan -> można zrobić jeszcze drugą wersje gdzie mnoży się razy 5.5 ze wzgledu na średni koszt przejścia
Należy zaimplementować kolejkę priorytetową oraz zaimplementować algorytm przeszukiwania grafu stanów z uwzględnieniem kosztu za pomocą przerobienia algorytmu przeszukiwania grafu stanów
"""
import random
import pygame
import Node
import BFS
from displayControler import NUM_X, NUM_Y
from Pole import stoneList
from queue import PriorityQueue
def getRandomGoalTreasure():
while True:
goalTreasure = (random.randint(0, NUM_X - 1), random.randint(0, NUM_Y - 1)) # Współrzędne celu
if goalTreasure not in stoneList:
break
return goalTreasure
def heuristic(state, goal):
# Oblicz odległość Manhattanowską między aktualnym stanem a celem
manhattan_distance = abs(state['x'] - goal[0]) + abs(state['y'] - goal[1])
return manhattan_distance
'''def get_cost_for_plant(plant_name):
plant_costs = {
"pszenica": 7,
"kukurydza": 9,
"ziemniak": 2,
"slonecznik": 5,
"borowka": 3,
"winogrono": 4,
"mud": 15,
"dirt": 0,
}
if plant_name in plant_costs:
return plant_costs[plant_name]
else:
# Jeśli nazwa rośliny nie istnieje w słowniku, zwróć domyślną wartość
return 0
'''
def A_star(istate, pole, goalTreasure):
# goalTreasure = (random.randint(0,NUM_X-1), random.randint(0,NUM_Y-1))
# #jeśli chcemy używać random musimy wykreslić sloty z kamieniami, ponieważ tez mogą się wylosować i wtedy traktor w ogóle nie rusza
#lub zrobić to jakoś inaczej, np. funkcja szukająca najmniej nawodnionej rośliny
# przeniesione wyżej do funkcji getRandomGoalTreasure, wykorzystywana jest w App.py
# while True:
# goalTreasure = (random.randint(0, NUM_X - 1), random.randint(0, NUM_Y - 1)) # Współrzędne celu
# if goalTreasure not in stoneList:
# break
fringe = PriorityQueue() # Kolejka priorytetowa dla wierzchołków do rozpatrzenia
explored = [] # Lista odwiedzonych stanów
obrot = 1
# Tworzenie węzła początkowego
x = Node.Node(istate)
x.g = 0
x.h = heuristic(x.state, goalTreasure)
fringe.put((x.g + x.h, x)) # Dodanie węzła do kolejki
total_cost = 0
while not fringe.empty():
_, elem = fringe.get() # Pobranie węzła z najniższym priorytetem
if BFS.goalTest3(elem.state, goalTreasure): # Sprawdzenie, czy osiągnięto cel
path = []
cost_list=[]
while elem.parent is not None: # Odtworzenie ścieżki
path.append([elem.parent, elem.action])
elem = elem.parent
for node, action in path:
# Obliczanie kosztu ścieżki dla każdego pola i wyświetlanie
plant_cost = get_plant_name_and_cost_from_coordinates(node.state['x'],node.state['y'], pole)
if action == "left" or action == "right": # Liczenie kosztu tylko dla pól nie będących obrotami
total_cost += obrot
cost_list.append(obrot)
else:
total_cost += plant_cost
cost_list.append(plant_cost)
return path,cost_list,total_cost
explored.append(elem.state)
for resp in succ3A(elem.state):
child_state = resp[1]
if child_state not in explored:
child = Node.Node(child_state)
child.parent = elem
child.action = resp[0]
# Pobranie nazwy rośliny z danego slotu na podstawie współrzędnych
plant_cost = get_plant_name_and_cost_from_coordinates(child_state['x'], child_state['y'], pole)
# Pobranie kosztu dla danej rośliny
#plant_cost = get_cost_for_plant(plant_name)
if child.action == "left" or child.action == "right":
child.g = elem.g + obrot
else:
child.g = elem.g + plant_cost
# Obliczenie heurystyki dla dziecka
child.h = heuristic(child.state, goalTreasure)
in_fringe = False
for priority, item in fringe.queue:
if item.state == child.state:
in_fringe = True
if priority > child.g + child.h:
# Jeśli znaleziono węzeł w kolejce o gorszym priorytecie, zastąp go nowym
fringe.queue.remove((priority, item))
fringe.put((child.g + child.h, child))
break
if not in_fringe:
# Jeśli stan dziecka nie jest w kolejce, dodaj go do kolejki
fringe.put((child.g + child.h, child))
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
return False
def get_plant_name_and_cost_from_coordinates(x, y, pole):
if (x, y) in pole.slot_dict: # Sprawdzenie, czy podane współrzędne znajdują się na polu
slot = pole.slot_dict[(x, y)] # Pobranie slotu na podstawie współrzędnych
if slot.plant: # Sprawdzenie, czy na slocie znajduje się roślina
return slot.plant.stan.koszt # Zwrócenie nazwy rośliny na slocie
else:
return 0 # jeśli na slocie nie ma rośliny
else:
return 0 # jeśli podane współrzędne są poza polem
#to ogólnie identyczna funkcja jak w BFS ale nie chciałam tam ruszać, żeby przypadkiem nie zapsuć do BFS,
#tylko musiałam dodac sprawdzenie kolizji, bo traktor brał sloty z Y których nie ma na planszy
def succ3A(state):
resp = []
if state["direction"] == "N":
if state["y"] > 0 and (state['x'], state["y"] - 1) not in stoneList:
resp.append(["forward", {'x': state["x"], 'y': state["y"]-1, 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "E"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "W"}])
elif state["direction"] == "S":
if state["y"] < NUM_Y - 1 and (state['x'], state["y"] + 1) not in stoneList:
resp.append(["forward", {'x': state["x"], 'y': state["y"]+1, 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "W"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "E"}])
elif state["direction"] == "E":
if state["x"] < NUM_X - 1 and (state['x'] + 1, state["y"]) not in stoneList:
resp.append(["forward", {'x': state["x"]+1, 'y': state["y"], 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "S"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "N"}])
else: #state["direction"] == "W"
if state["x"] > 0 and (state['x'] - 1, state["y"]) not in stoneList:
resp.append(["forward", {'x': state["x"]-1, 'y': state["y"], 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "N"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "S"}])
return resp
def heuristic2(state, goal):
# Oblicz odległość Manhattanowską między aktualnym stanem a celem
manhattan_distance = (abs(state['x'] - goal[0]) + abs(state['y'] - goal[1])) * 2.5
return manhattan_distance
def A_star2(istate, pole, goalTreasure):
# goalTreasure = (random.randint(0,NUM_X-1), random.randint(0,NUM_Y-1))
# #jeśli chcemy używać random musimy wykreslić sloty z kamieniami, ponieważ tez mogą się wylosować i wtedy traktor w ogóle nie rusza
#lub zrobić to jakoś inaczej, np. funkcja szukająca najmniej nawodnionej rośliny
# przeniesione wyżej do funkcji getRandomGoalTreasure, wykorzystywana jest w App.py
# while True:
# goalTreasure = (random.randint(0, NUM_X - 1), random.randint(0, NUM_Y - 1)) # Współrzędne celu
# if goalTreasure not in stoneList:
# break
fringe = PriorityQueue() # Kolejka priorytetowa dla wierzchołków do rozpatrzenia
explored = [] # Lista odwiedzonych stanów
obrot = 1
# Tworzenie węzła początkowego
x = Node.Node(istate)
x.g = 0
x.h = heuristic2(x.state, goalTreasure)
fringe.put((x.g + x.h, x)) # Dodanie węzła do kolejki
total_cost=0
while not fringe.empty():
_, elem = fringe.get() # Pobranie węzła z najniższym priorytetem
if BFS.goalTest3(elem.state, goalTreasure): # Sprawdzenie, czy osiągnięto cel
path = []
cost_list=[]
while elem.parent is not None: # Odtworzenie ścieżki
path.append([elem.parent, elem.action])
elem = elem.parent
for node, action in path:
# Obliczanie kosztu ścieżki dla każdego pola i wyświetlanie
plant_cost = get_plant_name_and_cost_from_coordinates(node.state['x'],node.state['y'], pole)
if action == "left" or action == "right": # Liczenie kosztu tylko dla pól nie będących obrotami
total_cost += obrot
cost_list.append(obrot)
else:
total_cost += plant_cost
cost_list.append(plant_cost)
return path,cost_list,total_cost
explored.append(elem.state)
for resp in succ3A(elem.state):
child_state = resp[1]
if child_state not in explored:
child = Node.Node(child_state)
child.parent = elem
child.action = resp[0]
# Pobranie nazwy rośliny z danego slotu na podstawie współrzędnych
plant_cost = get_plant_name_and_cost_from_coordinates(child_state['x'], child_state['y'], pole)
if child.action == "left" or child.action == "right":
child.g = elem.g + obrot
else:
child.g = elem.g + plant_cost
# Obliczenie heurystyki dla dziecka
child.h = heuristic2(child.state, goalTreasure)
in_fringe = False
for priority, item in fringe.queue:
if item.state == child.state:
in_fringe = True
if priority > child.g + child.h:
# Jeśli znaleziono węzeł w kolejce o gorszym priorytecie, zastąp go nowym
fringe.queue.remove((priority, item))
fringe.put((child.g + child.h, child))
break
if not in_fringe:
# Jeśli stan dziecka nie jest w kolejce, dodaj go do kolejki
fringe.put((child.g + child.h, child))
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
return False
"""
TO TEST SPEED OF ASTAR
test_speed = False
if test_speed:
time1 = 0
time2 = 0
cost1 = 0
cost2 = 0
for i in range(500):
print(i)
start = time.time()
aStarRoot, cost_list, total_cost = AStar.A_star({'x': 0, 'y': 0, 'direction': "E"}, pole, goalTreasure)
end = time.time()
time1 += end - start
cost1 += total_cost
start = time.time()
aStarRoot2, cost_list, total_cost = AStar.A_star2({'x': 0, 'y': 0, 'direction': "E"}, pole, goalTreasure)
end = time.time()
time2 += end - start
cost2 += total_cost
print(time1, time2)
print(float(cost1 / 1000), float(cost2 / 1000))
"""

View File

@ -1,47 +0,0 @@
import Srodek
#w przyszłości trzeba przenieść definicję środków do innego pliku inicjalizującego
class Akcja:
srodki = [] #lista obiektów klasy Srodek
benefits = [] #lista przechowująca benefity płynące z wykonania akcji
def __init__(self, typ):
self.typ = typ
if self.typ == "nawodnienie":
self.srodki.append(Srodek.Srodek(1, "woda", "woda"))
self.srodki.append(Srodek.Srodek(1.5, "powerade", "woda")) #nawadnia lepiej niż woda
self.benefits.append(typ)
self.benefits.append(100)
if self.typ == "zyznosc":
self.srodki.append(Srodek.Srodek(2, "obornik", "nawoz"))
self.srodki.append(Srodek.Srodek(3, "azotan", "nawoz"))
self.srodki.append(Srodek.Srodek(4, "wapno", "nawoz"))
self.srodki.append(Srodek.Srodek(5, "superfosfat", "nawoz"))
self.benefits.append(typ)
self.benefits.append(100)
if self.typ == "wzrost":
self.srodki.append(Srodek.Srodek(6, "witaminy", "odzywka"))
self.srodki.append(Srodek.Srodek(7, "aminokwasy", "odzywka"))
self.srodki.append(Srodek.Srodek(8, "algi morskie", "odzywka"))
self.benefits.append(typ)
self.benefits.append(20)
if self.typ == "grzyb":
self.srodki.append(Srodek.Srodek(9, "mankozeb", "ochrona"))
self.srodki.append(Srodek.Srodek(10, "czosnek", "ochrona")) #tak czosnek zabija grzyby
self.benefits.append("choroba")
self.benefits.append("brak")
if self.typ == "bakteria":
self.srodki.append(Srodek.Srodek(11, "miedź", "ochrona"))
self.srodki.append(Srodek.Srodek(12, "streptomycyna ", "ochrona"))
self.benefits.append("choroba")
self.benefits.append("brak")
if self.typ == "pasożyt":
self.srodki.append(Srodek.Srodek(13, "Cyjantraniliprol", "ochrona"))
self.srodki.append(Srodek.Srodek(14, "Permetryna", "ochrona"))
self.srodki.append(Srodek.Srodek(15, "Abamektyna", "ochrona"))
self.benefits.append("choroba")
self.benefits.append("brak")
def getBenefit(self):
return self.benefits

172
App.py

File diff suppressed because one or more lines are too long

267
BFS.py
View File

@ -1,267 +0,0 @@
import random
import pygame
import Node
from displayControler import NUM_X, NUM_Y
from Pole import stoneList
def goalTest1(hIndex):
for i in list(hIndex.values()):
if i == 0:
return False
return True
def succ1(state):
resp = []
hIndex = state["hydradeIndex"].copy()
if state["direction"] == "N":
if state["y"] > 0:
if hIndex[state["x"], state["y"]-1] == 0:
hIndex[state["x"], state["y"] - 1] = 1
resp.append(["forward", {'x': state["x"], 'y': state["y"]-1, 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "E", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "W", 'hydradeIndex': state["hydradeIndex"].copy()}])
elif state["direction"] == "S":
if state["y"] < NUM_Y-1:
if hIndex[state["x"], state["y"]+1] == 0:
hIndex[state["x"], state["y"] + 1] = 1
resp.append(["forward", {'x': state["x"], 'y': state["y"]+1, 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "W", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "E", 'hydradeIndex': state["hydradeIndex"].copy()}])
elif state["direction"] == "E":
if state["x"] < NUM_X-1:
if hIndex[state["x"]+1, state["y"]] == 0:
hIndex[state["x"] + 1, state["y"]] = 1
resp.append(["forward", {'x': state["x"]+1, 'y': state["y"], 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "S", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "N", 'hydradeIndex': state["hydradeIndex"].copy()}])
else: #state["zwrot"] == "W"
if state["x"] > 0:
if hIndex[state["x"]-1, state["y"]] == 0:
hIndex[state["x"] - 1, state["y"]] = 1
resp.append(["forward", {'x': state["x"]-1, 'y': state["y"], 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "N", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "S", 'hydradeIndex': state["hydradeIndex"].copy()}])
return resp
def check1(tab, state):
for i in tab:
if i.state == state:
return False
return True
def BFS1(istate):
fringe = []
explored = []
x = Node.Node(istate)
fringe.append(x)
while True:
if fringe == []:
return False
elem = fringe.pop(0)
if goalTest1(elem.state["hydradeIndex"]):
x = elem
tab = []
while x.parent != None:
tab.append([x.parent, x.action])
x = x.parent
return tab
explored.append(elem)
for resp in succ1(elem.state):
if check1(fringe, resp[1]) and check1(explored, resp[1]):
x = Node.Node(resp[1])
x.parent = elem
x.action = resp[0]
fringe.append(x)
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
def goalTest3(state, goalTreassure):
if state["x"] == goalTreassure[0] and state["y"] == goalTreassure[1]:
return True
return False
def succ3(state):
resp = []
if state["direction"] == "N":
if state["y"] > 0 and (state['x'], state["y"] - 1) not in stoneList:
resp.append(["forward", {'x': state["x"], 'y': state["y"]-1, 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "E"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "W"}])
elif state["direction"] == "S":
if state["y"] < NUM_Y - 1 and (state['x'], state["y"] + 1) not in stoneList:
resp.append(["forward", {'x': state["x"], 'y': state["y"]+1, 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "W"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "E"}])
elif state["direction"] == "E":
if state["x"] < NUM_X - 1 and (state['x'] + 1, state["y"]) not in stoneList:
resp.append(["forward", {'x': state["x"]+1, 'y': state["y"], 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "S"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "N"}])
else: #state["zwrot"] == "W"
if state["x"] > 0 and (state['x'] - 1, state["y"]) not in stoneList:
resp.append(["forward", {'x': state["x"]-1, 'y': state["y"], 'direction': state["direction"]}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "N"}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "S"}])
return resp
def check3(tab, state):
for i in tab:
if i.state == state:
return False
return True
def BFS3(istate,GT):
randomGT=False
if(randomGT==True):
goalTreassuere = (random.randint(0,NUM_X-1), random.randint(0,NUM_Y-1))
else:
goalTreassuere=GT
print(goalTreassuere)
fringe = []
explored = []
x = Node.Node(istate)
fringe.append(x)
while True:
if fringe == []:
return False
elem = fringe.pop(0)
if goalTest3(elem.state, goalTreassuere):
x = elem
tab = []
while x.parent != None:
tab.append([x.parent, x.action])
x = x.parent
return tab
explored.append(elem)
for resp in succ3(elem.state):
if check3(fringe, resp[1]) and check3(explored, resp[1]):
x = Node.Node(resp[1])
x.parent = elem
x.action = resp[0]
fringe.append(x)
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
"""
def goalTest(hIndex):
for i in list(hIndex.values()):
if i == 0:
return False
return True
def succ(state):
resp = []
hIndex = state["hydradeIndex"].copy()
if state["direction"] == "N":
if state["y"] > 0:
if hIndex[state["x"], state["y"]-1] == 0:
hIndex[state["x"], state["y"] - 1] = 1
resp.append(["forward", {'x': state["x"], 'y': state["y"]-1, 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "E", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "W", 'hydradeIndex': state["hydradeIndex"].copy()}])
elif state["direction"] == "S":
if state["y"] < dCon.NUM_Y-1:
if hIndex[state["x"], state["y"]+1] == 0:
hIndex[state["x"], state["y"] + 1] = 1
resp.append(["forward", {'x': state["x"], 'y': state["y"]+1, 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "W", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "E", 'hydradeIndex': state["hydradeIndex"].copy()}])
elif state["direction"] == "E":
if state["x"] < dCon.NUM_X-1:
if hIndex[state["x"]+1, state["y"]] == 0:
hIndex[state["x"] + 1, state["y"]] = 1
resp.append(["forward", {'x': state["x"]+1, 'y': state["y"], 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "S", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "N", 'hydradeIndex': state["hydradeIndex"].copy()}])
else: #state["direction"] == "W"
if state["x"] > 0:
if hIndex[state["x"]-1, state["y"]] == 0:
hIndex[state["x"] - 1, state["y"]] = 1
resp.append(["forward", {'x': state["x"]-1, 'y': state["y"], 'direction': state["direction"], 'hydradeIndex': hIndex}])
resp.append(["right", {'x': state["x"], 'y': state["y"], 'direction': "N", 'hydradeIndex': state["hydradeIndex"].copy()}])
resp.append(["left", {'x': state["x"], 'y': state["y"], 'direction': "S", 'hydradeIndex': state["hydradeIndex"].copy()}])
return resp
def check(tab, state):
for i in tab:
if i.state == state:
return False
return True
def BFS(istate):
fringe = []
explored = []
x = Node.Node(istate)
fringe.append(x)
while True:
if fringe == []:
return False
elem = fringe.pop(0)
if goalTest(elem.state["hydradeIndex"]):
x = elem
tab = []
while x.parent != None:
tab.append(x.action)
x = x.parent
return tab
explored.append(elem)
for resp in succ(elem.state):
if check(fringe, resp[1]) and check(explored, resp[1]):
x = Node.Node(resp[1])
x.parent = elem
x.action = resp[0]
fringe.append(x)
"""

View File

@ -1,49 +0,0 @@
#THESE DICTIONARIES ARE USED FOR DISPLAY AND FOR DOCUMENTATION PURPOSES
seasons={
0:"zima",
1:"wiosna",
2:"lato",
3:"jesien"}
time={
0:"rano",
1:"poludnie",
2:"wieczor",
3:"noc"}
rain={
0:"brak",
1:"lekki deszcz",
2:"normalny deszcz",
3:"ulewa"
}
temperature={
0:"bardzo zimno",
1:"zimno",
2:"przecietnie",
3:"cieplo",
4:"upal",}
def getNextSeason(season):
if(season==3):
return 0
else:
return season+1
def getNextTime(currentTime):
if(currentTime==3):
return 0
else:
return currentTime+1
def getAmount(type):
if(type=="seasons"):
return len(seasons)
if(type=="rain"):
return len(rain)
if(type=="time"):
return len(time)
if(type=="temperature"):
return len(temperature)

View File

@ -1,47 +0,0 @@
import random
import Climate
import Ui
class Condition:
def __init__(self):
self.season=self.setRandomSeason()
self.currentTime=self.setRandomTime()
self.rain=self.setRandomRain()
self.temperature=self.setRandomRain()
self.clock=0
def setRandomSeason(self):
return self.randomizer(Climate.getAmount("seasons"))
def setRandomTime(self):
return self.randomizer(Climate.getAmount("time"))
def setRandomRain(self):
return self.randomizer(Climate.getAmount("rain"))
def setRandomTemperature(self):
return self.randomizer(Climate.getAmount("temperature"))
def randomizer(self,max):
return random.randint(0,max-1)
def cycle(self):
if(self.clock==11):
self.currentTime=0
self.rain=self.setRandomRain()
self.temperature=self.setRandomTemperature()
self.season=Climate.getNextSeason(self.season)
self.clock=0
return
else:
self.currentTime=Climate.getNextTime(self.currentTime)
self.rain=self.setRandomRain()
self.temperature=self.setRandomTemperature()
self.clock=self.clock+1
def return_condition(self):
return [self.temperature,self.rain,self.season,self.currentTime]
def getCondition(self):
return ([Climate.temperature[self.temperature],Climate.rain[self.rain],Climate.seasons[self.season],Climate.time[self.currentTime]])

File diff suppressed because it is too large Load Diff

View File

@ -1,248 +0,0 @@
plant_water_level,growth,disease,fertility,tractor_water_level,temperature,rain,season,current_time,action
1,20,0,40,60,2,0,2,1,1
20,40,0,40,60,2,0,2,1,1
87,20,0,40,60,2,0,2,1,0
27,43,1,40,60,2,0,2,1,0
89,56,1,40,60,2,1,1,1,0
67,100,1,37,55,1,3,3,3,0
67,40,1,87,90,4,0,1,0,0
1,20,0,40,60,2,0,0,1,0
20,40,0,40,60,2,0,0,1,0
87,20,0,56,45,2,0,0,2,0
27,43,1,40,60,2,0,0,3,0
89,56,1,40,89,2,1,0,1,0
67,100,1,37,55,1,3,0,3,0
67,40,1,87,90,4,0,0,0,0
1,100,0,45,20,2,0,2,1,0
20,100,0,40,34,0,1,2,0,0
87,100,0,56,60,2,0,1,1,0
27,100,0,89,67,1,2,2,2,0
89,100,0,40,60,2,1,1,1,0
76,100,0,37,55,1,3,3,3,0
67,100,0,87,90,4,0,1,0,0
1,20,0,40,0,2,0,2,1,0
20,40,0,40,0,2,0,2,1,0
87,20,0,40,0,2,0,2,1,0
27,43,1,40,0,2,0,2,1,0
89,56,1,40,0,2,1,1,1,0
67,100,1,37,0,1,3,3,3,0
67,40,1,87,0,4,0,1,0,0
1,20,0,40,0,2,0,0,1,0
20,40,0,40,0,2,0,0,1,0
87,20,0,56,0,2,0,0,2,0
27,43,1,40,0,2,0,0,3,0
89,56,1,40,0,2,1,0,1,0
67,100,1,37,0,1,3,0,3,0
67,40,1,87,0,4,0,0,0,0
1,100,0,45,0,2,0,2,1,0
20,100,0,40,0,0,1,2,0,0
87,100,0,56,0,2,0,1,1,0
27,100,0,89,0,1,2,2,2,0
89,100,0,40,0,2,1,1,1,0
76,100,0,37,0,1,3,3,3,0
67,100,0,87,0,4,0,1,0,0
1,45,0,56,44,2,1,1,1,1
20,55,0,43,34,2,0,2,2,1
15,23,0,23,26,2,1,3,3,1
45,67,0,12,67,3,0,1,0,1
59,88,0,34,87,3,0,2,1,1
32,32,0,32,90,3,0,3,2,1
44,43,0,19,27,2,0,1,3,1
33,11,0,28,76,2,0,2,0,1
54,90,0,44,5,3,0,3,1,1
21,76,0,50,25,3,1,1,2,1
29,64,0,38,36,2,0,2,3,1
11,54,0,65,44,3,1,1,2,1
23,55,0,34,43,3,0,2,1,1
51,32,0,32,62,3,1,3,3,1
54,76,0,21,76,2,0,1,2,1
95,88,0,43,78,2,0,2,1,0
23,23,0,23,9,2,0,3,3,1
44,34,0,91,72,3,0,1,0,1
33,11,0,82,67,3,0,2,2,1
45,9,0,44,50,2,0,3,3,1
21,67,0,50,52,2,1,1,0,1
92,46,0,83,63,3,0,2,1,0
20,55,1,43,34,0,0,2,2,0
15,23,1,23,26,0,1,3,3,0
45,67,1,12,67,0,0,1,0,0
59,88,1,34,87,0,0,2,1,0
32,32,0,32,90,0,0,3,2,0
44,43,0,19,27,4,0,1,3,0
33,11,0,28,76,4,0,2,0,0
54,90,0,44,5,4,0,3,1,0
21,76,0,50,25,4,1,1,2,0
29,64,0,38,36,4,0,2,3,0
11,54,0,65,44,0,1,1,2,0
23,55,0,34,43,0,0,2,1,0
51,32,0,32,62,0,1,3,3,0
80,76,1,39,7,3,0,1,0,0
98,77,0,15,91,1,3,2,3,0
3,48,1,73,41,2,2,0,3,0
20,15,1,97,87,4,1,2,1,0
93,6,0,37,0,0,1,0,1,0
4,31,0,1,5,2,3,1,2,0
42,52,0,33,19,3,2,3,0,0
76,43,0,77,18,4,0,0,3,0
31,13,1,21,42,0,1,2,3,0
96,65,1,63,35,1,3,3,2,0
29,39,0,40,37,3,3,0,0,0
82,53,0,55,9,0,1,3,2,0
21,35,0,58,1,1,2,2,0,0
92,98,0,69,16,3,0,0,1,0
34,23,0,95,2,2,3,0,3,0
36,28,0,62,22,0,1,1,1,0
66,88,1,10,85,3,1,2,3,0
53,51,0,79,90,2,2,3,2,0
9,74,0,60,4,4,1,2,3,1
17,0,0,38,58,1,2,3,0,0
12,76,0,50,25,3,1,1,2,1
92,64,0,38,36,2,0,2,3,0
11,54,0,65,44,3,1,1,2,1
32,55,0,34,43,3,0,2,1,1
15,32,0,32,62,3,1,3,3,1
45,76,0,21,76,2,0,1,2,1
59,88,0,43,78,2,0,2,1,1
32,23,0,23,9,2,0,3,3,1
14,34,0,91,72,3,0,1,0,1
13,11,0,82,67,3,0,2,2,1
45,9,0,44,50,2,0,3,3,1
21,67,0,50,52,2,1,1,0,1
92,46,0,83,63,3,0,2,1,0
2,40,1,34,43,1,3,2,2,0
51,32,1,32,62,2,1,3,3,0
54,76,1,21,76,3,0,1,0,0
98,38,0,50,44,4,0,1,0,0
63,7,0,93,79,2,0,2,1,1
91,59,0,94,24,4,0,3,2,0
11,49,0,54,76,2,0,1,3,1
33,31,0,59,39,3,0,1,3,1
28,50,0,26,0,4,0,2,2,0
54,83,0,36,0,3,0,2,1,0
49,78,0,68,0,2,0,3,2,0
59,21,0,43,100,1,0,3,2,1
1,30,0,52,100,2,0,0,3,0
60,9,0,40,40,3,0,0,3,0
85,94,0,87,85,4,0,1,3,0
79,68,0,56,90,1,0,2,2,1
75,22,0,25,95,1,0,3,2,1
100,51,0,33,12,0,0,2,2,0
90,70,0,71,81,0,0,2,1,0
47,26,0,6,78,4,0,1,1,1
14,89,0,70,18,4,0,1,0,1
99,19,0,74,91,2,0,3,0,0
18,48,0,15,32,2,0,3,0,1
5,57,0,14,34,0,1,1,3,1
22,67,0,9,5,0,1,2,2,0
95,81,0,46,86,1,1,3,1,0
39,65,0,84,0,1,1,0,0,0
84,75,0,30,0,2,1,1,1,0
86,41,0,2,67,2,1,2,2,0
64,53,0,53,47,1,1,3,3,1
69,61,0,0,73,2,1,0,0,0
94,40,1,0,18,3,1,1,2,0
62,82,1,20,50,4,1,2,3,0
57,1,1,17,92,0,1,3,2,0
80,35,1,58,45,0,0,3,1,0
30,47,1,8,47,1,0,2,1,0
82,32,0,99,39,1,3,1,3,0
20,84,0,0,51,2,3,2,3,0
42,88,0,0,54,2,2,2,0,0
66,45,0,91,10,3,2,1,0,0
81,14,0,19,55,3,0,1,2,1
74,37,0,88,78,4,0,3,2,1
89,99,0,100,60,4,0,3,3,0
15,20,0,45,11,0,0,1,3,1
92,28,0,85,90,2,0,1,1,0
55,4,0,13,95,2,0,2,1,1
2,6,0,35,0,2,0,2,0,0
61,56,0,90,0,2,0,3,0,0
76,11,0,61,10,3,0,3,1,1
26,80,0,57,9,3,0,1,2,1
40,44,0,81,8,3,0,2,3,1
50,66,0,23,7,3,0,3,0,1
48,15,0,77,6,2,0,0,1,0
11,54,0,65,44,3,3,1,2,0
23,55,0,34,43,3,3,2,1,0
51,32,0,32,62,3,3,3,3,0
54,76,0,21,76,2,3,1,2,0
95,88,0,43,78,2,3,2,1,0
23,23,0,23,9,2,3,3,3,0
44,34,0,91,72,3,3,1,0,0
33,11,0,82,67,3,3,2,2,0
45,9,0,44,50,2,3,3,3,0
21,67,0,50,52,2,3,1,0,0
92,46,0,83,63,3,3,2,1,0
20,55,1,43,34,0,3,2,2,0
15,23,1,23,26,0,3,3,3,0
45,67,1,12,67,0,3,1,0,0
59,88,1,34,87,0,3,2,1,0
32,32,0,32,90,0,3,3,2,0
1,60,0,55,11,0,1,0,0,1
2,70,0,44,12,1,1,0,1,1
3,44,0,11,13,2,1,0,2,1
4,55,0,34,66,3,0,0,3,1
5,66,0,90,77,0,0,1,2,1
6,22,0,89,88,0,0,2,2,1
7,1,0,45,9,0,1,2,3,1
8,2,0,34,22,3,1,2,3,1
9,3,0,56,34,3,1,0,1,1
10,6,0,78,5,3,0,3,1,1
11,8,0,36,67,2,0,0,0,1
12,59,0,57,23,2,1,1,0,1
13,67,0,29,34,1,1,0,1,1
14,20,0,30,90,1,1,2,2,1
15,21,0,66,89,0,1,3,3,1
44,100,0,91,72,3,3,1,0,0
33,100,0,82,67,3,3,2,2,0
45,100,0,44,50,2,3,3,3,0
21,100,0,50,52,2,3,1,0,0
92,100,0,83,63,3,3,2,1,0
20,100,1,43,34,0,3,2,2,0
15,100,1,23,26,0,3,3,3,0
45,100,1,12,67,0,3,1,0,0
59,100,1,34,87,0,3,2,1,0
32,100,0,32,90,0,3,3,2,0
1,100,0,55,11,0,1,0,0,0
2,100,0,44,12,1,1,0,1,0
3,100,0,11,13,2,1,0,2,0
4,100,0,34,66,3,0,0,3,0
5,100,0,90,77,0,0,1,2,0
6,100,0,89,88,0,0,2,2,0
7,100,0,45,9,0,1,2,3,0
8,100,0,34,22,3,1,2,3,0
9,100,0,56,34,3,1,0,1,0
10,100,0,78,5,3,0,3,1,0
11,100,0,36,67,2,0,0,0,0
12,100,0,57,23,2,1,1,0,0
13,100,0,29,34,1,1,0,1,0
14,100,0,30,90,1,1,2,2,0
15,100,0,66,89,0,1,3,3,0
1,6,0,5,10,4,1,1,3,1
2,7,0,4,20,4,1,2,2,1
3,4,0,11,30,4,1,3,1,1
4,5,0,43,5,2,0,1,2,1
5,6,0,9,17,2,0,2,1,1
6,2,0,98,18,4,0,3,1,1
7,11,0,54,19,4,1,0,2,1
8,20,0,43,22,4,1,1,1,1
9,30,0,65,43,4,1,2,3,1
10,60,0,87,50,1,0,3,3,1
11,80,0,63,76,1,0,0,2,1
12,95,0,75,32,1,1,1,1,1
13,76,0,30,43,2,1,2,0,1
14,2,0,92,9,2,1,3,0,1
1,6,0,5,10,4,3,1,3,0
2,7,0,4,20,4,3,2,2,0
3,4,0,11,30,4,3,3,1,0
4,5,0,43,5,2,3,1,2,0
5,6,0,9,17,2,3,2,1,0
6,2,0,98,18,4,3,3,1,0
7,11,0,54,19,4,3,0,2,0
8,20,0,43,22,4,3,1,1,0
9,30,0,65,43,4,3,2,3,0
10,60,0,87,50,1,3,3,3,0
11,80,0,63,76,1,3,0,2,0
12,95,0,75,32,1,3,1,1,0
13,76,0,30,43,2,3,2,0,0
14,2,0,92,9,2,3,3,0,0
1 plant_water_level growth disease fertility tractor_water_level temperature rain season current_time action
2 1 20 0 40 60 2 0 2 1 1
3 20 40 0 40 60 2 0 2 1 1
4 87 20 0 40 60 2 0 2 1 0
5 27 43 1 40 60 2 0 2 1 0
6 89 56 1 40 60 2 1 1 1 0
7 67 100 1 37 55 1 3 3 3 0
8 67 40 1 87 90 4 0 1 0 0
9 1 20 0 40 60 2 0 0 1 0
10 20 40 0 40 60 2 0 0 1 0
11 87 20 0 56 45 2 0 0 2 0
12 27 43 1 40 60 2 0 0 3 0
13 89 56 1 40 89 2 1 0 1 0
14 67 100 1 37 55 1 3 0 3 0
15 67 40 1 87 90 4 0 0 0 0
16 1 100 0 45 20 2 0 2 1 0
17 20 100 0 40 34 0 1 2 0 0
18 87 100 0 56 60 2 0 1 1 0
19 27 100 0 89 67 1 2 2 2 0
20 89 100 0 40 60 2 1 1 1 0
21 76 100 0 37 55 1 3 3 3 0
22 67 100 0 87 90 4 0 1 0 0
23 1 20 0 40 0 2 0 2 1 0
24 20 40 0 40 0 2 0 2 1 0
25 87 20 0 40 0 2 0 2 1 0
26 27 43 1 40 0 2 0 2 1 0
27 89 56 1 40 0 2 1 1 1 0
28 67 100 1 37 0 1 3 3 3 0
29 67 40 1 87 0 4 0 1 0 0
30 1 20 0 40 0 2 0 0 1 0
31 20 40 0 40 0 2 0 0 1 0
32 87 20 0 56 0 2 0 0 2 0
33 27 43 1 40 0 2 0 0 3 0
34 89 56 1 40 0 2 1 0 1 0
35 67 100 1 37 0 1 3 0 3 0
36 67 40 1 87 0 4 0 0 0 0
37 1 100 0 45 0 2 0 2 1 0
38 20 100 0 40 0 0 1 2 0 0
39 87 100 0 56 0 2 0 1 1 0
40 27 100 0 89 0 1 2 2 2 0
41 89 100 0 40 0 2 1 1 1 0
42 76 100 0 37 0 1 3 3 3 0
43 67 100 0 87 0 4 0 1 0 0
44 1 45 0 56 44 2 1 1 1 1
45 20 55 0 43 34 2 0 2 2 1
46 15 23 0 23 26 2 1 3 3 1
47 45 67 0 12 67 3 0 1 0 1
48 59 88 0 34 87 3 0 2 1 1
49 32 32 0 32 90 3 0 3 2 1
50 44 43 0 19 27 2 0 1 3 1
51 33 11 0 28 76 2 0 2 0 1
52 54 90 0 44 5 3 0 3 1 1
53 21 76 0 50 25 3 1 1 2 1
54 29 64 0 38 36 2 0 2 3 1
55 11 54 0 65 44 3 1 1 2 1
56 23 55 0 34 43 3 0 2 1 1
57 51 32 0 32 62 3 1 3 3 1
58 54 76 0 21 76 2 0 1 2 1
59 95 88 0 43 78 2 0 2 1 0
60 23 23 0 23 9 2 0 3 3 1
61 44 34 0 91 72 3 0 1 0 1
62 33 11 0 82 67 3 0 2 2 1
63 45 9 0 44 50 2 0 3 3 1
64 21 67 0 50 52 2 1 1 0 1
65 92 46 0 83 63 3 0 2 1 0
66 20 55 1 43 34 0 0 2 2 0
67 15 23 1 23 26 0 1 3 3 0
68 45 67 1 12 67 0 0 1 0 0
69 59 88 1 34 87 0 0 2 1 0
70 32 32 0 32 90 0 0 3 2 0
71 44 43 0 19 27 4 0 1 3 0
72 33 11 0 28 76 4 0 2 0 0
73 54 90 0 44 5 4 0 3 1 0
74 21 76 0 50 25 4 1 1 2 0
75 29 64 0 38 36 4 0 2 3 0
76 11 54 0 65 44 0 1 1 2 0
77 23 55 0 34 43 0 0 2 1 0
78 51 32 0 32 62 0 1 3 3 0
79 80 76 1 39 7 3 0 1 0 0
80 98 77 0 15 91 1 3 2 3 0
81 3 48 1 73 41 2 2 0 3 0
82 20 15 1 97 87 4 1 2 1 0
83 93 6 0 37 0 0 1 0 1 0
84 4 31 0 1 5 2 3 1 2 0
85 42 52 0 33 19 3 2 3 0 0
86 76 43 0 77 18 4 0 0 3 0
87 31 13 1 21 42 0 1 2 3 0
88 96 65 1 63 35 1 3 3 2 0
89 29 39 0 40 37 3 3 0 0 0
90 82 53 0 55 9 0 1 3 2 0
91 21 35 0 58 1 1 2 2 0 0
92 92 98 0 69 16 3 0 0 1 0
93 34 23 0 95 2 2 3 0 3 0
94 36 28 0 62 22 0 1 1 1 0
95 66 88 1 10 85 3 1 2 3 0
96 53 51 0 79 90 2 2 3 2 0
97 9 74 0 60 4 4 1 2 3 1
98 17 0 0 38 58 1 2 3 0 0
99 12 76 0 50 25 3 1 1 2 1
100 92 64 0 38 36 2 0 2 3 0
101 11 54 0 65 44 3 1 1 2 1
102 32 55 0 34 43 3 0 2 1 1
103 15 32 0 32 62 3 1 3 3 1
104 45 76 0 21 76 2 0 1 2 1
105 59 88 0 43 78 2 0 2 1 1
106 32 23 0 23 9 2 0 3 3 1
107 14 34 0 91 72 3 0 1 0 1
108 13 11 0 82 67 3 0 2 2 1
109 45 9 0 44 50 2 0 3 3 1
110 21 67 0 50 52 2 1 1 0 1
111 92 46 0 83 63 3 0 2 1 0
112 2 40 1 34 43 1 3 2 2 0
113 51 32 1 32 62 2 1 3 3 0
114 54 76 1 21 76 3 0 1 0 0
115 98 38 0 50 44 4 0 1 0 0
116 63 7 0 93 79 2 0 2 1 1
117 91 59 0 94 24 4 0 3 2 0
118 11 49 0 54 76 2 0 1 3 1
119 33 31 0 59 39 3 0 1 3 1
120 28 50 0 26 0 4 0 2 2 0
121 54 83 0 36 0 3 0 2 1 0
122 49 78 0 68 0 2 0 3 2 0
123 59 21 0 43 100 1 0 3 2 1
124 1 30 0 52 100 2 0 0 3 0
125 60 9 0 40 40 3 0 0 3 0
126 85 94 0 87 85 4 0 1 3 0
127 79 68 0 56 90 1 0 2 2 1
128 75 22 0 25 95 1 0 3 2 1
129 100 51 0 33 12 0 0 2 2 0
130 90 70 0 71 81 0 0 2 1 0
131 47 26 0 6 78 4 0 1 1 1
132 14 89 0 70 18 4 0 1 0 1
133 99 19 0 74 91 2 0 3 0 0
134 18 48 0 15 32 2 0 3 0 1
135 5 57 0 14 34 0 1 1 3 1
136 22 67 0 9 5 0 1 2 2 0
137 95 81 0 46 86 1 1 3 1 0
138 39 65 0 84 0 1 1 0 0 0
139 84 75 0 30 0 2 1 1 1 0
140 86 41 0 2 67 2 1 2 2 0
141 64 53 0 53 47 1 1 3 3 1
142 69 61 0 0 73 2 1 0 0 0
143 94 40 1 0 18 3 1 1 2 0
144 62 82 1 20 50 4 1 2 3 0
145 57 1 1 17 92 0 1 3 2 0
146 80 35 1 58 45 0 0 3 1 0
147 30 47 1 8 47 1 0 2 1 0
148 82 32 0 99 39 1 3 1 3 0
149 20 84 0 0 51 2 3 2 3 0
150 42 88 0 0 54 2 2 2 0 0
151 66 45 0 91 10 3 2 1 0 0
152 81 14 0 19 55 3 0 1 2 1
153 74 37 0 88 78 4 0 3 2 1
154 89 99 0 100 60 4 0 3 3 0
155 15 20 0 45 11 0 0 1 3 1
156 92 28 0 85 90 2 0 1 1 0
157 55 4 0 13 95 2 0 2 1 1
158 2 6 0 35 0 2 0 2 0 0
159 61 56 0 90 0 2 0 3 0 0
160 76 11 0 61 10 3 0 3 1 1
161 26 80 0 57 9 3 0 1 2 1
162 40 44 0 81 8 3 0 2 3 1
163 50 66 0 23 7 3 0 3 0 1
164 48 15 0 77 6 2 0 0 1 0
165 11 54 0 65 44 3 3 1 2 0
166 23 55 0 34 43 3 3 2 1 0
167 51 32 0 32 62 3 3 3 3 0
168 54 76 0 21 76 2 3 1 2 0
169 95 88 0 43 78 2 3 2 1 0
170 23 23 0 23 9 2 3 3 3 0
171 44 34 0 91 72 3 3 1 0 0
172 33 11 0 82 67 3 3 2 2 0
173 45 9 0 44 50 2 3 3 3 0
174 21 67 0 50 52 2 3 1 0 0
175 92 46 0 83 63 3 3 2 1 0
176 20 55 1 43 34 0 3 2 2 0
177 15 23 1 23 26 0 3 3 3 0
178 45 67 1 12 67 0 3 1 0 0
179 59 88 1 34 87 0 3 2 1 0
180 32 32 0 32 90 0 3 3 2 0
181 1 60 0 55 11 0 1 0 0 1
182 2 70 0 44 12 1 1 0 1 1
183 3 44 0 11 13 2 1 0 2 1
184 4 55 0 34 66 3 0 0 3 1
185 5 66 0 90 77 0 0 1 2 1
186 6 22 0 89 88 0 0 2 2 1
187 7 1 0 45 9 0 1 2 3 1
188 8 2 0 34 22 3 1 2 3 1
189 9 3 0 56 34 3 1 0 1 1
190 10 6 0 78 5 3 0 3 1 1
191 11 8 0 36 67 2 0 0 0 1
192 12 59 0 57 23 2 1 1 0 1
193 13 67 0 29 34 1 1 0 1 1
194 14 20 0 30 90 1 1 2 2 1
195 15 21 0 66 89 0 1 3 3 1
196 44 100 0 91 72 3 3 1 0 0
197 33 100 0 82 67 3 3 2 2 0
198 45 100 0 44 50 2 3 3 3 0
199 21 100 0 50 52 2 3 1 0 0
200 92 100 0 83 63 3 3 2 1 0
201 20 100 1 43 34 0 3 2 2 0
202 15 100 1 23 26 0 3 3 3 0
203 45 100 1 12 67 0 3 1 0 0
204 59 100 1 34 87 0 3 2 1 0
205 32 100 0 32 90 0 3 3 2 0
206 1 100 0 55 11 0 1 0 0 0
207 2 100 0 44 12 1 1 0 1 0
208 3 100 0 11 13 2 1 0 2 0
209 4 100 0 34 66 3 0 0 3 0
210 5 100 0 90 77 0 0 1 2 0
211 6 100 0 89 88 0 0 2 2 0
212 7 100 0 45 9 0 1 2 3 0
213 8 100 0 34 22 3 1 2 3 0
214 9 100 0 56 34 3 1 0 1 0
215 10 100 0 78 5 3 0 3 1 0
216 11 100 0 36 67 2 0 0 0 0
217 12 100 0 57 23 2 1 1 0 0
218 13 100 0 29 34 1 1 0 1 0
219 14 100 0 30 90 1 1 2 2 0
220 15 100 0 66 89 0 1 3 3 0
221 1 6 0 5 10 4 1 1 3 1
222 2 7 0 4 20 4 1 2 2 1
223 3 4 0 11 30 4 1 3 1 1
224 4 5 0 43 5 2 0 1 2 1
225 5 6 0 9 17 2 0 2 1 1
226 6 2 0 98 18 4 0 3 1 1
227 7 11 0 54 19 4 1 0 2 1
228 8 20 0 43 22 4 1 1 1 1
229 9 30 0 65 43 4 1 2 3 1
230 10 60 0 87 50 1 0 3 3 1
231 11 80 0 63 76 1 0 0 2 1
232 12 95 0 75 32 1 1 1 1 1
233 13 76 0 30 43 2 1 2 0 1
234 14 2 0 92 9 2 1 3 0 1
235 1 6 0 5 10 4 3 1 3 0
236 2 7 0 4 20 4 3 2 2 0
237 3 4 0 11 30 4 3 3 1 0
238 4 5 0 43 5 2 3 1 2 0
239 5 6 0 9 17 2 3 2 1 0
240 6 2 0 98 18 4 3 3 1 0
241 7 11 0 54 19 4 3 0 2 0
242 8 20 0 43 22 4 3 1 1 0
243 9 30 0 65 43 4 3 2 3 0
244 10 60 0 87 50 1 3 3 3 0
245 11 80 0 63 76 1 3 0 2 0
246 12 95 0 75 32 1 3 1 1 0
247 13 76 0 30 43 2 3 2 0 0
248 14 2 0 92 9 2 3 3 0 0

View File

@ -1,29 +0,0 @@
from sklearn import tree as skltree
import pandas,os
import matplotlib.pyplot as plt
atributes=['plant_water_level','growth','disease','fertility','tractor_water_level','temperature','rain','season','current_time'] #Columns in CSV file has to be in the same order
class Drzewo:
def __init__(self):
self.tree=self.treeLearn()
def treeLearn(self):
csvdata=pandas.read_csv('Data/dataTree2.csv')
#csvdata = pandas.read_csv('Data/dataTree2.csv')
x=csvdata[atributes]
decision=csvdata['action']
self.tree=skltree.DecisionTreeClassifier()
self.tree=self.tree.fit(x.values,decision)
def plotTree(self):
plt.figure(figsize=(20,30))
skltree.plot_tree(self.tree,filled=True,feature_names=atributes)
plt.title("Drzewo decyzyjne wytrenowane na przygotowanych danych: ")
plt.savefig('tree.png')
#plt.show()
def makeDecision(self,values):
action=self.tree.predict([values]) #0- nie podlewac, 1-podlewac
if(action==[0]):
return "Nie"
if(action==[1]):
return "Tak"

View File

@ -1,139 +0,0 @@
import json
import random
from displayControler import NUM_Y, NUM_X
iterat = 2500
population = 120
roulette = True
plants = ['corn', 'potato', 'tomato', 'carrot']
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
yield_reduction = {
'corn': {'corn': -4.5, 'potato': -3, 'tomato': -7, 'carrot': -7},
'potato': {'corn': -7, 'potato': -5, 'tomato': -10, 'carrot': -6},
'tomato': {'corn': -4, 'potato': -5, 'tomato': -7, 'carrot': -7},
'carrot': {'corn': -11, 'potato': -5, 'tomato': -4, 'carrot': -7}
}
yield_reduction2 = {
'corn': {'corn': None, 'potato': -4, 'tomato': -2, 'carrot': -4},
'potato': {'corn': None, 'potato': -5, 'tomato': -5, 'carrot': -2},
'tomato': {'corn': -5, 'potato': -3, 'tomato': -7, 'carrot': None},
'carrot': {'corn': -3, 'potato': -6, 'tomato': -4, 'carrot': -9}
}
yield_multiplier = {'corn': 1.25, 'potato': 1.17, 'tomato': 1.22, 'carrot': 1.13}
yield_multiplier2 = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.15}
def calculate_yields(garden):
rows = len(garden)
cols = len(garden[0])
total_yields = 0
for i in range(rows):
for j in range(cols):
plant = garden[i][j]
yield_count = initial_yields[plant]
# Sprawdzanie sąsiadów
neighbors = [
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
]
for ni, nj in neighbors:
if 0 <= ni < rows and 0 <= nj < cols:
neighbor_plant = garden[ni][nj]
yield_count += yield_reduction[plant][neighbor_plant]
yield_count *= yield_multiplier[plant]
total_yields += yield_count
return total_yields
def calculate_yields2(garden):
rows = len(garden)
cols = len(garden[0])
total_yields = 0
for i in range(rows):
for j in range(cols):
plant = garden[i][j]
yield_count = initial_yields[plant]
# Sprawdzanie sąsiadów
neighbors = [
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
]
neighbor_flag = False
for ni, nj in neighbors:
if 0 <= ni < rows and 0 <= nj < cols:
neighbor_plant = garden[ni][nj]
if yield_reduction2[plant][neighbor_plant] is not None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
yield_count += yield_reduction2[plant][neighbor_plant]
else:
neighbor_flag = True
if not neighbor_flag:
yield_count *= yield_multiplier2[plant]
total_yields += yield_count
return total_yields
def generate_garden(rows=20, cols=12):
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
def generate_garden_with_yields(t, rows=NUM_Y, cols=NUM_X):
garden = generate_garden(rows, cols)
if t == 1:
total_yields = calculate_yields(garden)
else:
total_yields = calculate_yields2(garden)
return [garden, total_yields]
def generate():
s1 = 0
s2 = 0
n = 150
for i in range(n):
x = generate_garden_with_yields(1)
s1 += x[1]
y = generate_garden_with_yields(2)
s2 += y[1]
return [s1/n, s2/n]
data = generate()
# print(data)
# Odczyt z pliku
with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
garden_data = json.load(file)
# print("Odczytane dane ogrodu:")
# for row in garden_data:
# print(row)
print("Wygenerowane przy pomocy GA: ", calculate_yields(garden_data))
print(f"Przeciętny ogród wygenerowany randomowo ma {data[0]} plonów")
print("Uśredniony przyrost plonów (ile razy więcej plonów): ", calculate_yields(garden_data)/data[0])
# Odczyt z pliku
with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
garden_data2 = json.load(file)
# print("Odczytane dane ogrodu:")
# for row in garden_data2:
# print(row)
print("Wygenerowane: przy pomocy GA2", calculate_yields2(garden_data2))
print(f"Przeciętny ogród wygenerowany randomowo ma {data[1]} plonów")
print("Uśredniony przyrost plonów (ile razy więcej plonów): ", calculate_yields2(garden_data2)/data[1])

View File

@ -1,208 +0,0 @@
import copy
import json
import random
from displayControler import NUM_X, NUM_Y
# Definiowanie stałych dla roślin i plonów
plants = ['corn', 'potato', 'tomato', 'carrot']
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
yield_reduction = {
'corn': {'corn': -4.5, 'potato': -3, 'tomato': -7, 'carrot': -7},
'potato': {'corn': -7, 'potato': -5, 'tomato': -10, 'carrot': -6},
'tomato': {'corn': -4, 'potato': -5, 'tomato': -7, 'carrot': -7},
'carrot': {'corn': -11, 'potato': -5, 'tomato': -4, 'carrot': -7}
}
yield_multiplier = {'corn': 1.25, 'potato': 1.17, 'tomato': 1.22, 'carrot': 1.13}
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
def generate_garden(rows=20, cols=12):
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
# Funkcja do obliczania liczby plonów
def calculate_yields(garden):
rows = len(garden)
cols = len(garden[0])
total_yields = 0
for i in range(rows):
for j in range(cols):
plant = garden[i][j]
yield_count = initial_yields[plant]
# Sprawdzanie sąsiadów
neighbors = [
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
]
for ni, nj in neighbors:
if 0 <= ni < rows and 0 <= nj < cols:
neighbor_plant = garden[ni][nj]
yield_count += yield_reduction[plant][neighbor_plant]
yield_count *= yield_multiplier[plant]
total_yields += yield_count
return total_yields
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
garden = generate_garden(rows, cols)
total_yields = calculate_yields(garden)
return [garden, total_yields]
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
def line():
path = []
flag = False
x = random.randint(4, 8)
position = (0, x)
path.append(position)
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
w = [0.6, 0.2, 0.2]
position2 = random.choices(p, w)[0]
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
path.append(position2)
position = position2
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
flag = True
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
for i in range(len(path) - 1):
if path[i + 1][0] - path[i][0] == 1:
info.append(NUM_Y - path[i][1])
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
if path[-1:][0][1] == 0:
x = NUM_Y
else:
x = 0
while len(info) < NUM_X:
info.append(x)
# return path, info
return info
# Funkcja do generowania potomstwa
def divide_gardens(garden1, garden2):
info = line()
new_garden1 = [[] for _ in range(NUM_Y)]
new_garden2 = [[] for _ in range(NUM_Y)]
for i in range(NUM_X):
for j in range(NUM_Y):
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
if j < info[i]:
new_garden1[j].append(garden1[j][i])
new_garden2[j].append(garden2[j][i])
else:
new_garden1[j].append(garden2[j][i])
new_garden2[j].append(garden1[j][i])
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
# Funkcja do mutacji danej planszy/ogrodu
def mutation(garden, not_used):
new_garden = copy.deepcopy(garden)
for i in range(NUM_X):
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
new_garden[x][i] = random.choice(other_plants)
return [new_garden, calculate_yields(new_garden)]
# Funkcja do generowania pierwszego pokolenia
def generate(n):
generation = []
for i in range(n * 3):
generation.append(generate_garden_with_yields())
generation.sort(reverse=True, key=lambda x: x[1])
return generation[:n]
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
def sum_yields(x):
s = 0
for i in range(len(x)):
s += x[i][1]
return s
if __name__ == '__main__':
roulette = True
attemps = 150
iterat = 2500
population = 120
best = []
for a in range(attemps):
generation = generate(population)
print(generation[0][1])
for i in range(iterat): # ile iteracji - nowych pokoleń
print(a, i)
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
j = 0
while j < (
population - (
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
if roulette: # zasada ruletki -> "2 rzuty kulką"
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
z = []
if s == 0: # wtedy każdy osobnik ma takie same szanse
z.append(random.randint(0, population - 1))
z.append(random.randint(0, population - 1))
else:
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
for i in range(population):
weights.append(generation[i][1] / s)
pos.append(i)
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
else: # metoda rankingu
z = random.sample(range(0, int(population // 1.7)), 2)
# krzyzowanie 90% szans, mutacja 10% szans
function = [divide_gardens, mutation]
weight = [0.9, 0.1]
fun = random.choices(function, weight)[0]
h = fun(generation[z[0]][0], generation[z[1]][0])
if len(h[0]) == 2:
new_generation.append(h[0])
new_generation.append(h[1])
j += 2
else:
new_generation.append(h)
j += 1
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
generation = new_generation[:population]
best.append(generation[0])
best.sort(reverse=True, key=lambda x: x[1])
# Zapis do pliku
# for i in range(len(best)):
# print(best[i][1], calculate_yields(best[i][0]))
#
#
# with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
# json.dump(best[0][0], file, indent=4)
#
# print("Dane zapisane do pliku")
# Odczyt z pliku
# with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
# garden_data = json.load(file)
#
# print("Odczytane dane ogrodu:")
# for row in garden_data:
# print(row)
#
# print(calculate_yields(garden_data))
# if best[0][0] == garden_data:
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))

View File

@ -1,213 +0,0 @@
import copy
import json
import random
from displayControler import NUM_X, NUM_Y
# Definiowanie stałych dla roślin i plonów
plants = ['corn', 'potato', 'tomato', 'carrot']
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
yield_reduction = {
'corn': {'corn': None, 'potato': -4, 'tomato': -2, 'carrot': -4},
'potato': {'corn': None, 'potato': -5, 'tomato': -5, 'carrot': -2},
'tomato': {'corn': -5, 'potato': -3, 'tomato': -7, 'carrot': None},
'carrot': {'corn': -3, 'potato': -6, 'tomato': -4, 'carrot': -9}
}
yield_multiplier = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.15}
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
def generate_garden(rows=20, cols=12):
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
# Funkcja do obliczania liczby plonów
def calculate_yields(garden):
rows = len(garden)
cols = len(garden[0])
total_yields = 0
for i in range(rows):
for j in range(cols):
plant = garden[i][j]
yield_count = initial_yields[plant]
# Sprawdzanie sąsiadów
neighbors = [
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
]
neighbor_flag = False
for ni, nj in neighbors:
if 0 <= ni < rows and 0 <= nj < cols:
neighbor_plant = garden[ni][nj]
if yield_reduction[plant][neighbor_plant] is not None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
yield_count += yield_reduction[plant][neighbor_plant]
else:
neighbor_flag = True
if not neighbor_flag:
yield_count *= yield_multiplier[plant]
total_yields += yield_count
return total_yields
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
garden = generate_garden(rows, cols)
total_yields = calculate_yields(garden)
return [garden, total_yields]
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
def line():
path = []
flag = False
x = random.randint(4, 8)
position = (0, x)
path.append(position)
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
w = [0.6, 0.2, 0.2]
position2 = random.choices(p, w)[0]
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
path.append(position2)
position = position2
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
flag = True
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
for i in range(len(path) - 1):
if path[i + 1][0] - path[i][0] == 1:
info.append(NUM_Y - path[i][1])
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
if path[-1:][0][1] == 0:
x = NUM_Y
else:
x = 0
while len(info) < NUM_X:
info.append(x)
# return path, info
return info
# Funkcja do generowania potomstwa
def divide_gardens(garden1, garden2):
info = line()
new_garden1 = [[] for _ in range(NUM_Y)]
new_garden2 = [[] for _ in range(NUM_Y)]
for i in range(NUM_X):
for j in range(NUM_Y):
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
if j < info[i]:
new_garden1[j].append(garden1[j][i])
new_garden2[j].append(garden2[j][i])
else:
new_garden1[j].append(garden2[j][i])
new_garden2[j].append(garden1[j][i])
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
# Funkcja do mutacji danej planszy/ogrodu
def mutation(garden, not_used):
new_garden = copy.deepcopy(garden)
for i in range(NUM_X):
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
new_garden[x][i] = random.choice(other_plants)
return [new_garden, calculate_yields(new_garden)]
# Funkcja do generowania pierwszego pokolenia
def generate(n):
generation = []
for i in range(n * 3):
generation.append(generate_garden_with_yields())
generation.sort(reverse=True, key=lambda x: x[1])
return generation[:n]
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
def sum_yields(x):
s = 0
for i in range(len(x)):
s += x[i][1]
return s
if __name__ == '__main__':
roulette = True
attemps = 20
iterat = 2500
population = 120
best = []
for a in range(attemps):
generation = generate(population)
print(generation[0][1])
for i in range(iterat): # ile iteracji - nowych pokoleń
print(a, i)
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
j = 0
while j < (
population - (
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
if roulette: # zasada ruletki -> "2 rzuty kulką"
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
z = []
if s == 0: # wtedy każdy osobnik ma takie same szanse
z.append(random.randint(0, population - 1))
z.append(random.randint(0, population - 1))
else:
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
for i in range(population):
weights.append(generation[i][1] / s)
pos.append(i)
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
else: # metoda rankingu
z = random.sample(range(0, int(population // 1.7)), 2)
# krzyzowanie 90% szans, mutacja 10% szans
function = [divide_gardens, mutation]
weight = [0.9, 0.1]
fun = random.choices(function, weight)[0]
h = fun(generation[z[0]][0], generation[z[1]][0])
if len(h[0]) == 2:
new_generation.append(h[0])
new_generation.append(h[1])
j += 2
else:
new_generation.append(h)
j += 1
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
generation = new_generation[:population]
best.append(generation[0])
best.sort(reverse=True, key=lambda x: x[1])
# Zapis do pliku
# for i in range(len(best)):
# print(best[i][1], calculate_yields(best[i][0]))
#
#
# with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
# json.dump(best[0][0], file, indent=4)
#
# print("Dane zapisane do pliku")
#
# Odczyt z pliku
# with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
# garden_data = json.load(file)
#
# print("Odczytane dane ogrodu:")
# for row in garden_data:
# print(row)
#
# print(calculate_yields(garden_data))
# if best[0][0] == garden_data:
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))

View File

@ -1,211 +0,0 @@
import copy
import json
import random
from displayControler import NUM_X, NUM_Y
# Definiowanie stałych dla roślin i plonów
plants = ['corn', 'potato', 'tomato', 'carrot']
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
yield_reduction = {
'corn': {'corn': None, 'potato': 0, 'tomato': 0, 'carrot': 0},
'potato': {'corn': None, 'potato': 0, 'tomato': 0, 'carrot': 0},
'tomato': {'corn': 0, 'potato': 0, 'tomato': 0, 'carrot': None},
'carrot': {'corn': 0, 'potato': 0, 'tomato': 0, 'carrot': 0}
}
yield_multiplier = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.13}
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
def generate_garden(rows=20, cols=12):
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
# Funkcja do obliczania liczby plonów
def calculate_yields(garden):
rows = len(garden)
cols = len(garden[0])
total_yields = 0
for i in range(rows):
for j in range(cols):
plant = garden[i][j]
# Sprawdzanie sąsiadów
neighbors = [
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
]
neighbor_flag = False
for ni, nj in neighbors:
if 0 <= ni < rows and 0 <= nj < cols:
neighbor_plant = garden[ni][nj]
if yield_reduction[plant][neighbor_plant] is None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
neighbor_flag = True
if not neighbor_flag:
total_yields += 1
return total_yields
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
garden = generate_garden(rows, cols)
total_yields = calculate_yields(garden)
return [garden, total_yields]
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
def line():
path = []
flag = False
x = random.randint(4, 8)
position = (0, x)
path.append(position)
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
w = [0.6, 0.2, 0.2]
position2 = random.choices(p, w)[0]
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
path.append(position2)
position = position2
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
flag = True
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
for i in range(len(path) - 1):
if path[i + 1][0] - path[i][0] == 1:
info.append(NUM_Y - path[i][1])
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
if path[-1:][0][1] == 0:
x = NUM_Y
else:
x = 0
while len(info) < NUM_X:
info.append(x)
# return path, info
return info
# Funkcja do generowania potomstwa
def divide_gardens(garden1, garden2):
info = line()
new_garden1 = [[] for _ in range(NUM_Y)]
new_garden2 = [[] for _ in range(NUM_Y)]
for i in range(NUM_X):
for j in range(NUM_Y):
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
if j < info[i]:
new_garden1[j].append(garden1[j][i])
new_garden2[j].append(garden2[j][i])
else:
new_garden1[j].append(garden2[j][i])
new_garden2[j].append(garden1[j][i])
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
# Funkcja do mutacji danej planszy/ogrodu
def mutation(garden, not_used):
new_garden = copy.deepcopy(garden)
for i in range(NUM_X):
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
new_garden[x][i] = random.choice(other_plants)
return [new_garden, calculate_yields(new_garden)]
# Funkcja do generowania pierwszego pokolenia
def generate(n):
generation = []
for i in range(n * 3):
generation.append(generate_garden_with_yields())
generation.sort(reverse=True, key=lambda x: x[1])
return generation[:n]
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
def sum_yields(x):
s = 0
for i in range(len(x)):
s += x[i][1]
return s
if __name__ == '__main__':
roulette = True
attemps = 1
population = 120
best = []
iter = 0
for a in range(attemps):
generation = generate(population)
print(generation[0][1])
while generation[0][1] != NUM_X*NUM_Y: # ile iteracji - nowych pokoleń
iter += 1
print(iter)
print(generation[0][1])
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
j = 0
while j < (
population - (
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
if roulette: # zasada ruletki -> "2 rzuty kulką"
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
z = []
if s == 0: # wtedy każdy osobnik ma takie same szanse
z.append(random.randint(0, population - 1))
z.append(random.randint(0, population - 1))
else:
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
for i in range(population):
weights.append(generation[i][1] / s)
pos.append(i)
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
else: # metoda rankingu
z = random.sample(range(0, int(population // 1.7)), 2)
# krzyzowanie 90% szans, mutacja 10% szans
function = [divide_gardens, mutation]
weight = [0.9, 0.1]
fun = random.choices(function, weight)[0]
h = fun(generation[z[0]][0], generation[z[1]][0])
if len(h[0]) == 2:
new_generation.append(h[0])
new_generation.append(h[1])
j += 2
else:
new_generation.append(h)
j += 1
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
generation = new_generation[:population]
best.append(generation[0])
best.sort(reverse=True, key=lambda x: x[1])
# Zapis do pliku
# for i in range(len(best)):
# print(best[i][1], calculate_yields(best[i][0]))
#
#
# with open(f'pole3_pop{population}_{iter}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
# json.dump(best[0][0], file, indent=4)
#
# print("Dane zapisane do pliku")
#
# Odczyt z pliku
# with open(f'pole3_pop{population}_{iter}_{roulette}.json', 'r') as file:
# garden_data = json.load(file)
#
# print("Odczytane dane ogrodu:")
# for row in garden_data:
# print(row)
#
# print(calculate_yields(garden_data))
# if best[0][0] == garden_data:
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))

View File

@ -1,104 +1,29 @@
import pygame
import displayControler as dCon
import random
import neuralnetwork
import os
class Image:
def __init__(self):
self.plants_image_dict={}
self.tractor_image=None
self.garage_image=None
self.stone_image=None
self.gasStation_image=None
def load_images(self):
files_plants={
0:"borowka",
files_plants={0:"borowka",
1:"kukurydza",
2:"pszenica",
3:"slonecznik",
4:"winogrono",
5:"ziemniak",
6:"dirt",
7:"mud",
8:"road"}
5:"ziemniak"}
for index in files_plants:
if index >= 6:
plant_image = pygame.image.load("images/" + files_plants[index] + ".jpg")
else:
plant_image=pygame.image.load("images/plants/"+files_plants[index]+".jpg")
plant_image=pygame.image.load("images/plants/"+files_plants[index]+".jpg")
plant_image=pygame.transform.scale(plant_image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
self.plants_image_dict[files_plants[index]]=plant_image
tractor_image=pygame.image.load("images/traktor.png")
tractor_image=pygame.transform.scale(tractor_image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
garage=pygame.image.load("images/garage.png")
self.garage_image=pygame.transform.scale(garage,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
stone=pygame.image.load("images/stone.png")
self.stone_image=pygame.transform.scale(stone,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
gasStation=pygame.image.load("images/gasStation.png")
self.gasStation_image=pygame.transform.scale(gasStation,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
def return_random_plant(self):
x=random.randint(0,5) #disabled dirt and mud generation
x=random.randint(0,5)
keys=list(self.plants_image_dict.keys())
plant=keys[x]
return (plant,self.plants_image_dict[plant])
return self.plants_image_dict[plant]
def return_plant(self,plant_name):
return (plant_name,self.plants_image_dict[plant_name])
def return_garage(self):
return self.garage_image
def return_stone(self):
return self.stone_image
def return_gasStation(self):
return self.gasStation_image
# losowanie zdjęcia z testowego datasetu bez powtórzeń
imagePathList = []
def getRandomImageFromDataBase():
label = random.choice(neuralnetwork.labels)
folderPath = f"dataset/test/{label}"
files = os.listdir(folderPath)
random_image = random.choice(files)
imgPath = os.path.join(folderPath, random_image)
while imgPath in imagePathList:
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
label = random.choice(neuralnetwork.labels)
folderPath = f"dataset/test/{label}"
files = os.listdir(folderPath)
random_image = random.choice(files)
imgPath = os.path.join(folderPath, random_image)
imagePathList.append(imgPath)
image = pygame.image.load(imgPath)
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
return image, label, imgPath
def getSpedifiedImageFromDatabase(label):
folderPath = f"dataset/test/{label}"
files = os.listdir(folderPath)
random_image = random.choice(files)
imgPath = os.path.join(folderPath, random_image)
while imgPath in imagePathList:
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
label = random.choice(neuralnetwork.labels)
folderPath = f"dataset/test/{label}"
files = os.listdir(folderPath)
random_image = random.choice(files)
imgPath = os.path.join(folderPath, random_image)
imagePathList.append(imgPath)
image = pygame.image.load(imgPath)
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
return image, label, imgPath
return self.plants_image_dict[plant_name]

13
Node.py
View File

@ -1,13 +0,0 @@
class Node:
state = None #[{stan}]
parent = None #[Node]
action = None #[Forward/Right/Left]
def __init__(self, state):
self.state = state
def __lt__(self, other):
"""
Definicja metody __lt__ (less than), która jest wymagana do porównywania obiektów typu Node.
"""
return self.g + self.h < other.g + other.h

View File

@ -1,19 +0,0 @@
import Akcja
class Osprzet:
def __init__(self, id, marka, model, akcje = None):
self.id = id
self.marka = marka
self.model = model
if akcje is None:
self.akcje = []
else:
self.akcje = akcje
plug = Osprzet(1,'Bomet', 'U031')
siewnik = Osprzet(2, "Amazone", "12001-C")
rozsiewacz = Osprzet(3, 'John Deere', 'TF 1500', [Akcja.Akcja("zyznosc")])
opryskiwacz = Osprzet(4, 'John Deere', 'M720', [Akcja.Akcja("grzyb"), Akcja.Akcja("bakterie"), Akcja.Akcja("nawodnienie"), Akcja.Akcja("wzrost")])
header = Osprzet(5, 'John Deere', 'X350R')
#jak istnieją jakieś bardziej profesjonalne nazwy czy lepsze to śmiało zmieńcie

61
Pole.py
View File

@ -4,21 +4,14 @@ import Colors
import pygame
import time
import Ui
import math
import random
import neuralnetwork
import Image
stoneList = [(3,3), (3,4), (3,5), (3,6), (4,6), (5,6), (6,6), (7,6), (8,6), (9,6), (10,6), (11,6), (12,6), (13,6), (14,6), (15,6), (16,6), (16,7), (16,8), (16,9)]
stoneFlag = False
class Pole:
def __init__(self,screen,image_loader, gasStation = (-1, -1)):
def __init__(self,screen,image_loader):
self.screen=screen
self.slot_dict={} #Slot are stored in dictionary with key being a Tuple of x and y coordinates so top left slot key is (0,0) and value is slot object
self.ui=Ui.Ui(screen)
self.image_loader=image_loader
self.gasStation=gasStation
def get_slot_from_cord(self,coordinates):
(x_axis,y_axis)=coordinates
@ -30,9 +23,9 @@ class Pole:
def get_slot_dict(self): #returns whole slot_dict
return self.slot_dict
#Draw grid and tractor (new one)
def draw_grid(self, nn=False):
def draw_grid(self):
for x in range(0,dCon.NUM_X): #Draw all cubes in X axis
for y in range(0,dCon.NUM_Y): #Draw all cubes in Y axis
new_slot=Slot.Slot(x,y,Colors.BROWN,self.screen,self.image_loader) #Creation of empty slot
@ -40,55 +33,13 @@ class Pole:
slot_dict=self.get_slot_dict()
for coordinates in slot_dict:
slot_dict[coordinates].draw()
garage=self.slot_dict[(0,0)]
garage.set_garage_image()
if stoneFlag:
for i in stoneList:
st=self.slot_dict[i]
st.set_stone_image()
if self.gasStation[0] != -1:
st=self.slot_dict[self.gasStation]
st.set_gasStation_image()
def randomize_colors(self, nn = False):
def randomize_colors(self):
pygame.display.update()
time.sleep(3)
#self.ui.render_text("Randomizing Crops")
self.ui.render_text("Randomizing Crops")
for coordinates in self.slot_dict:
if(stoneFlag):
if( coordinates in stoneList or coordinates == self.gasStation ):
continue
if(coordinates==(0,0)):
continue
else:
self.slot_dict[coordinates].set_random_plant(nn)
def setPlantsByList(self, plantList):
pygame.display.update()
time.sleep(3)
for coordinates in self.slot_dict:
if(coordinates==(0,0)):
continue
else:
self.slot_dict[coordinates].set_specifided_plant(plantList[coordinates[1]][coordinates[0]])
self.slot_dict[coordinates].set_random_plant()
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
self.get_slot_from_cord(coordinates).color_change(color)
def get_neighbor(self, slot, dx, dy):
neighbor_x = slot.x_axis + dx
neighbor_y = slot.y_axis + dy
return self.get_slot_from_cord((neighbor_x, neighbor_y))
def is_valid_move(self, coordinates):
return coordinates in self.slot_dict
def check_collision(self,mouse_x,mouse_y):
mouse_x=math.floor(mouse_x/dCon.CUBE_SIZE)
mouse_y=math.floor(mouse_y/dCon.CUBE_SIZE)
if(mouse_x<dCon.NUM_X):
if(mouse_y<dCon.NUM_Y):
collided=self.get_slot_from_cord((mouse_x,mouse_y))
return collided.print_status()
return ""

View File

@ -1,123 +0,0 @@
import Stan
import Srodek
import random
class Roslina:
nazwa = None #[string]
stan = None #[Stan]
srodek = None #[List<Srodek>]
"""
Nawodnienie (update co 30s):
- pszenica: -8
- kukurydza: -7
- ziemniak: -6
- słonecznik: -5
- borówka: -4
- winogrono: -4
Żyzność (update co 30s):
- pszenica: -7
- kukurydza: -4
- ziemniak: -5
- słonecznik: -3
- borówka: -5
- winogrono: -4
Wzrost (update co 30s):
- pszenica: +8
- kukurydza: +4
- ziemniak: +5
- słonecznik: +3
- borówka: +5
- winogrono: +4
Koszt (0-15):
- pszenica: 7
- kukurydza: 9
- ziemniak: 2
- słonecznik: 5
- borówka: 3
- winogrono: 4
- szuter (ścieżka): 0
- błoto: 15
def __init__(self, nazwa, stan, srodek):
self.nazwa = nazwa
self.stan = stan
self.srodek = srodek
"""
def __init__(self, nazwa):
self.nazwa = nazwa
self.stan = Stan.Stan()
if nazwa == "dirt":
self.stan.koszt = 0
self.stan.nawodnienie = 100
elif nazwa == "mud":
self.stan.koszt = 15
self.stan.nawodnienie = 100
else:
self.stan.set_random()
if nazwa == "pszenica":
self.stan.koszt = 7
elif nazwa == "kukurydza":
self.stan.koszt = 9
elif nazwa == "ziemniak":
self.stan.koszt = 2
elif nazwa == "slonecznik":
self.stan.koszt = 5
elif nazwa == "borowka":
self.stan.koszt = 3
else: # winogrono
self.stan.koszt = 4
self.srodek = None
def checkSrodek(self):
#może wykorzystać AI do porównywania zdjęć
for i in self.srodek:
for j in self.stan.akcja.srodki:
if i == j:
return i
return False
def doAkcja(self):
# sprawdza jaki srodek do danej akcji i jaki z nich może być użyty przy tej roślinie
# robi akcje
# aktualizuje dane o stanie i zdjęcie w zależności od wykonanej czynności (benefits w klasie akcja) -> (self.stan.akcja.benefits)
x = self.checkSrodek()
# robi akcje
setattr(self.stan, self.stan.akcja.benefits[0], self.stan.akcja.benefits[1])
return
def isAkcja(self):
# sprawdza czy jakaś akcja musi być wykonana, jeżeli tak, to ją wywołuje
# sprawdza czy jeszcze coś trzeba zrobić
self.stan.checkStan()
while self.stan.akcja != None:
self.doAkcja()
self.stan.checkStan()
return
def return_stan(self):
return self.stan
def return_stan_for_tree(self):
return self.stan.return_stan_for_tree()
def get_hydrate_stats(self):
return self.stan.return_hydrate()
def report_status(self):
return f"Nazwa rosliny: {self.nazwa} "+self.stan.report_all()
def return_status_tree(self):
return self.stan.return_stan_for_tree()

82
Slot.py
View File

@ -3,105 +3,37 @@ import displayControler as dCon
import Colors
import random
import Image
import Roslina
BORDER_THICKNESS=1 #Has to be INT value
class Slot:
def __init__(self,x_axis,y_axis,color,screen,image_loader):
self.x_axis=x_axis
self.y_axis=y_axis
self.plant_image = None
self.plant=None
self.plant=color #TODO CHANGE IT BY HOOKING PLANT CLASS
self.screen=screen
self.field=pygame.Rect(self.x_axis*dCon.CUBE_SIZE,self.y_axis*dCon.CUBE_SIZE,dCon.CUBE_SIZE,dCon.CUBE_SIZE)
self.image_loader=image_loader
self.garage_image=None
self.label = None
self.imagePath = None
def draw(self):
pygame.draw.rect(self.screen,Colors.BROWN,self.field,0) #Draw field
pygame.draw.rect(self.screen,Colors.BLACK,self.field,BORDER_THICKNESS) #Draw border
pygame.display.update()
def redraw_image(self, destroy = True):
if destroy:
self.mark_visited()
else:
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
def mark_visited(self):
plant,self.plant_image=self.image_loader.return_plant('road')
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
def redraw_image(self):
self.set_image()
def color_change(self,color):
self.plant=color
self.draw()
def set_random_plant(self, nn=False):
if not nn:
(plant_name,self.plant_image)=self.random_plant()
self.plant=Roslina.Roslina(plant_name)
else:
self.plant_image, self.label, self.imagePath = self.random_plant_dataset()
# print(self.plant_image)
self.plant=Roslina.Roslina(self.label)
self.set_image()
def set_specifided_plant(self, plant):
self.plant_image, self.label, self.imagePath = self.specified_plant_dataset(plant)
self.plant=Roslina.Roslina(self.label)
def set_random_plant(self):
self.plant=self.random_plant()
self.set_image()
def set_image(self):
if self.plant_image is None:
self.plant_image = self.image_loader.return_random_plant()
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
self.screen.blit(self.plant,(self.x_axis*dCon.CUBE_SIZE,self.y_axis*dCon.CUBE_SIZE))
pygame.draw.rect(self.screen,Colors.BLACK,self.field,BORDER_THICKNESS)
def set_garage_image(self):
self.plant_image=self.image_loader.return_garage()
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
def set_stone_image(self):
self.plant_image=self.image_loader.return_stone()
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
def set_gasStation_image(self):
self.plant_image=self.image_loader.return_gasStation()
self.screen.blit(self.plant_image, (self.x_axis * dCon.CUBE_SIZE, self.y_axis * dCon.CUBE_SIZE))
pygame.draw.rect(self.screen, Colors.BLACK, self.field, BORDER_THICKNESS)
def random_plant(self): #Probably will not be used later only for demo purpouse
return self.image_loader.return_random_plant()
def random_plant_dataset(self):
return Image.getRandomImageFromDataBase()
def specified_plant_dataset(self, plant):
return Image.getSpedifiedImageFromDatabase(plant)
def return_plant(self):
return self.plant
def get_hydrate_stats(self):
return self.plant.get_hydrate_stats()
def print_status(self):
return f"wspolrzedne: (X:{self.x_axis} Y:{self.y_axis}) "+self.plant.report_status()
def irrigatePlant(self):
self.plant.stan.nawodnienie = 100
def setHydrate(self,index):
if(index==0):
self.plant.stan.nawodnienie=random.randint(0,60)
elif(index==1):
self.plant.stan.nawodnienie=random.randint(61,100)
elif(index==-1):
pass
def return_stan_for_tree(self):
return self.plant.return_stan_for_tree()

View File

@ -1,5 +0,0 @@
class Srodek:
def __init__(self, id, nazwa, typ):
self.id = id
self.nazwa = nazwa
self.typ = typ

66
Stan.py
View File

@ -1,66 +0,0 @@
import Akcja
import random
class Stan:
nawodnienie = None #[int] 0-100 (0-60: trzeba podlać), spada w zaleznosci od rosliny: aktualizowane bedzie "w tle"
zyznosc = None #[int] 0-100 (0-60: trzeba użyźnić), spada w zaleznosci od rosliny: aktualizowane bedzie "w tle"
wzrost = None #[int] 0-100 (75-100: scinanie), wzrasta w zaleznosci od rosliny: aktualizowane bedzie "w tle"
choroba = None #[int] brak-0,choroba-1
akcja = None #[Akcja]
koszt = None #[int] 0-15, im więcej tym trudniej wjechać
def __init__(self, nawodnienie, zyznosc, wzrost, choroba):
self.nawodnienie = nawodnienie
self.zyznosc = zyznosc
self.wzrost = wzrost
self.choroba = choroba
def __init__(self):
self.nawodnienie=0
def set_random(self):
self.nawodnienie=random.randint(0,100)
self.zyznosc=random.randint(0,100)
self.wzrost=random.randint(0,100)
self.choroba=random.randint(0,1)
def checkStan(self):
# sprawdza stan rośliny i podejmuje akcje jeśli potrzebna
if self.nawodnienie <= 60:
self.akcja = Akcja.Akcja("nawodnienie")
return
elif self.zyznosc <= 60:
self.akcja = Akcja.Akcja("zyznosc")
return
elif self.wzrost >= 75:
self.akcja = Akcja.Akcja("wzrost")
return
elif self.choroba != "brak":
self.akcja = Akcja.Akcja(self.choroba)
return
else:
self.akcja = None
return
def return_hydrate(self):
return self.nawodnienie
def return_disease(self):
return self.choroba
def return_disease_as_string(self):
if(self.choroba==0):
return "Zdrowa"
if(self.choroba==1):
return "Chora"
def return_stan_for_tree(self):
return [self.nawodnienie,self.wzrost,self.choroba,self.zyznosc]
def report_all(self):
return f"Nawodnienie: {self.nawodnienie} Zyznosc: {self.zyznosc} Wzrost: {self.wzrost} Choroba: {self.return_disease_as_string()}"

View File

@ -1,290 +1,42 @@
import time
import pygame
import random
import Pole
import displayControler as dCon
import Slot
import Osprzet
import Node
import Condition
import Drzewo
import neuralnetwork as nn
condition=Condition.Condition()
drzewo=Drzewo.Drzewo()
format_string = "{:<25}{:<25}{:<25}{:<10}{:<10}{:<10}{:<25}{:<15}{:<20}{:<10}{:<15}"
format_string_nn="{:<10}{:<20}{:<20}{:<15}{:<20}"
tab = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
class Tractor:
DIRECTION_NORTH = 'N'
DIRECTION_SOUTH = 'S'
DIRECTION_WEST = 'W'
DIRECTION_EAST = 'E'
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
self.tractor_images = {
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
(dCon.CUBE_SIZE, dCon.CUBE_SIZE)),
Tractor.DIRECTION_SOUTH: pygame.transform.scale(pygame.image.load('images/traktorS.png'),
(dCon.CUBE_SIZE, dCon.CUBE_SIZE)),
Tractor.DIRECTION_WEST: pygame.transform.scale(pygame.image.load('images/traktorW.png'),
(dCon.CUBE_SIZE, dCon.CUBE_SIZE)),
Tractor.DIRECTION_EAST: pygame.transform.scale(pygame.image.load('images/traktor.png'),
(dCon.CUBE_SIZE, dCon.CUBE_SIZE))
}
self.direction = Tractor.DIRECTION_EAST # początkowy kierunek wschód
self.current_tractor_image = self.tractor_images[self.direction]
def __init__(self,x_axis,y_axis,screen):
self.x_axis=x_axis
self.y_axis=y_axis
self.tractor_image = pygame.image.load('images/traktor.png')
self.tractor_image = pygame.transform.scale(self.tractor_image, (dCon.CUBE_SIZE, dCon.CUBE_SIZE))
self.screen=screen
self.slot=slot
self.osprzet = osprzet
self.clock=clock
self.slot_hydrate_dict={}
self.bfs2_flag=bfs2_flag
self.waterLevel=random.randint(0,100)
self.slot=None
def draw_tractor(self):
self.screen.blit(self.current_tractor_image, (self.slot.x_axis * dCon.CUBE_SIZE, self.slot.y_axis * dCon.CUBE_SIZE))
self.screen.blit(self.tractor_image, (self.x_axis*dCon.CUBE_SIZE,self.y_axis*dCon.CUBE_SIZE))
pygame.display.update()
def turn_left(self):
# zmiana kierunku w lewo
direction_map = {
Tractor.DIRECTION_EAST: Tractor.DIRECTION_NORTH,
Tractor.DIRECTION_NORTH: Tractor.DIRECTION_WEST,
Tractor.DIRECTION_WEST: Tractor.DIRECTION_SOUTH,
Tractor.DIRECTION_SOUTH: Tractor.DIRECTION_EAST
}
self.direction = direction_map[self.direction]
self.current_tractor_image = self.tractor_images[self.direction]
def move_tractor(self,x):
if(x==0):
if(dCon.isValidMove(self.x_axis + 1, self.y_axis)):
print("Ruch w prawo")
self.x_axis=self.x_axis+1
elif(x==1):
if(dCon.isValidMove(self.x_axis - 1, self.y_axis)):
print("Ruch w lewo")
self.x_axis=self.x_axis-1
elif(x==2):
if(dCon.isValidMove(self.x_axis, self.y_axis + 1)):
print("Ruch w dol")
self.y_axis=self.y_axis+1
elif(x==3):
if(dCon.isValidMove(self.x_axis, self.y_axis - 1)):
print("Ruch w gore")
self.y_axis=self.y_axis-1
self.draw_tractor()
def tree_move(self, pole):
drzewo.treeLearn()
drzewo.plotTree()
self.snake_move_irrigation(pole, drzewo)
def get_attributes(self):
slot_attributes=self.slot.return_stan_for_tree()
climate_attributes=condition.return_condition()
attributes=[]
attributes=attributes+slot_attributes+[self.waterLevel]+climate_attributes
return attributes
def get_attributes_for_print(self):
slot_attributes=self.slot.return_plant().return_status_tree()
climate_attributes=condition.getCondition()
slot_attributes=slot_attributes+[self.waterLevel]
return slot_attributes+climate_attributes
def turn_right(self):
# zmiana kierunku w prawo
direction_map = {
Tractor.DIRECTION_EAST: Tractor.DIRECTION_SOUTH,
Tractor.DIRECTION_SOUTH: Tractor.DIRECTION_WEST,
Tractor.DIRECTION_WEST: Tractor.DIRECTION_NORTH,
Tractor.DIRECTION_NORTH: Tractor.DIRECTION_EAST
}
self.direction = direction_map[self.direction]
self.current_tractor_image = self.tractor_images[self.direction]
self.draw_tractor()
def move_forward(self, pole, destroy = True):
next_slot_coordinates = None
if self.direction == Tractor.DIRECTION_EAST:
next_slot_coordinates = (self.slot.x_axis + 1, self.slot.y_axis)
self.current_tractor_image = self.tractor_images[self.direction]
elif self.direction == Tractor.DIRECTION_WEST:
next_slot_coordinates = (self.slot.x_axis - 1, self.slot.y_axis)
self.current_tractor_image = self.tractor_images[self.direction]
elif self.direction == Tractor.DIRECTION_SOUTH:
next_slot_coordinates = (self.slot.x_axis, self.slot.y_axis + 1)
self.current_tractor_image = self.tractor_images[self.direction]
elif self.direction == Tractor.DIRECTION_NORTH:
next_slot_coordinates = (self.slot.x_axis, self.slot.y_axis - 1)
self.current_tractor_image = self.tractor_images[self.direction]
# sprawdzenie czy następny slot jest dobry
self.do_move_if_valid(pole,next_slot_coordinates, destroy)
self.clock.tick(10)
def do_move_if_valid(self,pole, next_slot_coordinates, destroy = True):
if next_slot_coordinates and pole.is_valid_move(next_slot_coordinates):
next_slot = pole.get_slot_from_cord(next_slot_coordinates)
self.slot.redraw_image(destroy)
self.slot = next_slot
self.draw_tractor()
return True
else:
return False
def random_move(self, pole):
self.clock.tick(2)
# losowanie skrętu
turn_direction = random.choice([self.turn_left, self.turn_right])
turn_direction()
self.clock.tick(5)
# wykonanie ruchu do przodu z uwzględnieniem aktualnej orientacji
self.move_forward(pole)
def reset_pos(self,pole):
self.do_move_if_valid(pole,(0,0))
def initial_move(self,pole):
if (self.bfs2_flag==True):
index=0
for y in range (0,dCon.NUM_Y):
if(y%2==0):
for x in range(0,dCon.NUM_X):
if(pole.is_valid_move((x,y))):
pole.get_slot_from_cord((x,y)).setHydrate(tab[index])
self.snake_move(pole,x,y)
index=index+1
else:
for x in range(dCon.NUM_X,-1,-1):
if(pole.is_valid_move((x,y))):
pole.get_slot_from_cord((x,y)).setHydrate(tab[index])
self.snake_move(pole,x,y)
index=index+1
else:
for y in range (0,dCon.NUM_Y):
if(y%2==0):
for x in range(0,dCon.NUM_X):
self.snake_move(pole,x,y)
else:
for x in range(dCon.NUM_X,-1,-1):
self.snake_move(pole,x,y)
def snake_move_irrigation(self, pole, drzewo):
headers=['Wspolrzedne','Czy podlac','Poziom nawodnienia','Wzrost','Choroba','Zyznosc','Poziom wody w traktorze','Temperatura','Opady','Pora Roku','Aktualny czas']
print(format_string.format(*headers))
initPos = (self.slot.x_axis, self.slot.y_axis)
counter = 0
for i in range(initPos[1], dCon.NUM_Y):
for j in range(initPos[0], dCon.NUM_X):
attributes=self.get_attributes()
decision = drzewo.makeDecision(attributes)
self.pretty_print_tree([str("({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis),decision,*self.get_attributes_for_print()])
if decision == "Tak":
self.slot.irrigatePlant()
counter += 1
condition.cycle()
pygame.time.delay(50)
self.waterLevel=random.randint(0,100)
#condition.getCondition()
self.move_forward(pole, False)
if i % 2 == 0 and i != dCon.NUM_Y - 1:
self.turn_right()
self.move_forward(pole, False)
self.turn_right()
elif i != dCon.NUM_Y - 1:
self.turn_left()
self.move_forward(pole, False)
self.turn_left()
print("podlanych slotów: ", str(counter))
def snake_move_predict_plant(self, pole, model, headers, actions = None):
print(format_string_nn.format(*headers))
initPos = (self.slot.x_axis, self.slot.y_axis)
count = 0
for i in range(initPos[1], dCon.NUM_Y):
for j in range(initPos[0], dCon.NUM_X):
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
if self.slot.imagePath != None:
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
# print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
for a in actions:
a(predictedLabel)
if self.slot.label != predictedLabel:
# self.slot.mark_visited()
count += 1
self.move_forward(pole, False)
if i % 2 == 0 and i != dCon.NUM_Y - 1:
self.turn_right()
self.move_forward(pole, False)
self.turn_right()
elif i != dCon.NUM_Y - 1:
self.turn_left()
self.move_forward(pole, False)
self.turn_left()
print(f"Dobrze rozpoznanych roślin: {20*12-count}, źle rozpoznanych roślin: {count}")
def fertilize_slot(self, predictedLabel):
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
if self.slot.label != predictedLabel:
self.slot.mark_visited()
def irigate_slot_NN(self, predictedLabel):
attributes=self.get_attributes()
decision = drzewo.makeDecision(attributes)
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",decision))
condition.cycle()
self.waterLevel = random.randint(0, 100)
def snake_move(self,pole,x,y):
next_slot_coordinates=(x,y)
if(self.do_move_if_valid(pole,next_slot_coordinates)):
if (x,y) not in Pole.stoneList:
if x == 0 and y == 0:
hydrateIndex = -1
elif pole.get_slot_from_cord((x,y)).get_hydrate_stats() < 60:
hydrateIndex = 0
else:
hydrateIndex = 1
self.slot_hydrate_dict[(x,y)]= hydrateIndex #Budowanie slownika slotow z poziomem nawodnienia dla traktorka
self.clock.tick(10)
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit()
def move_by_root(self, root, pole, actions = None):
for move in root:
self.slot.redraw_image()
if move[1] == 'forward':
self.move_forward(pole)
if move[1] == 'right':
self.turn_right()
if move[1] == 'left':
self.turn_left()
for a in actions:
a()
self.clock.tick(3)
#to tak zrobiłam już na później, może się przyda
def change_osprzet(self, new_osprzet):
self.osprzet = new_osprzet
def print_osprzet_info(self):
print("ID:", self.osprzet.id)
print("Marka:", self.osprzet.marka)
print("Model:", self.osprzet.model)
if self.osprzet.akcje:
print("Akcje:")
for akcja in self.osprzet.akcje:
print("- Typ:", akcja.typ)
else:
print("Brak akcji przypisanych do tego sprzętu.")
def pretty_print_tree(self,attributes):
print(format_string.format(*attributes))
def irrigateSlot(self):
try:
self.slot.irrigatePlant()
except:
pass
def random_move(self):
x=random.randint(0,3)
self.move_tractor(x)

32
Ui.py
View File

@ -7,36 +7,10 @@ class Ui:
def __init__(self,screen):
self.screen=screen
self.font='freesansbold.ttf' #Feel free to change it :D
if(dCon.NUM_Y<7):
self.font_size=int(15)
self.line=20
self.first_line=20
if(dCon.NUM_Y>=7):
self.font_size=int(30)
self.line=30
self.first_line=30
self.font_size=int(32)
def render_text(self,string_to_print):
font=pygame.font.Font(self.font,self.font_size)
text=font.render(string_to_print,True,Colors.BLACK,Colors.WHITE)
textRect=text.get_rect()
textRect.center=(dCon.getGameWidth() // 2,dCon.getScreenHeihgt() // 2)
self.screen.blit(text,textRect)
def render_text_to_console(self,string_to_print):
font=pygame.font.Font(self.font,self.font_size)
string_to_print=str(string_to_print)
self.break_string_to_console(string_to_print)
for string in self.to_print:
text=font.render(string,True,Colors.BLACK,Colors.WHITE)
textRect=text.get_rect()
textRect.center=(dCon.getGameWidth()+350/2,self.line)
textRect.scale_by(x=350,y=100)
self.screen.blit(text,textRect)
self.line=self.line+self.first_line
def clear_console(self):
self.line=self.first_line
pygame.draw.rect(self.screen,(0,0,0) , pygame.Rect(dCon.returnConsoleCoordinate(), 0, dCon.getConsoleWidth(), dCon.getScreenHeihgt()), 0)
def break_string_to_console(self,string_to_print):
self.to_print=string_to_print.split(" ")
textRect.center=(dCon.getScreenWidth() // 2,dCon.getScreenHeihgt() // 2)
self.screen.blit(text,textRect)

View File

@ -10,28 +10,8 @@ def isValidMove(x, y):
return False
return True
def getGameWidth():
def getScreenWidth():
return NUM_X * CUBE_SIZE
def returnConsoleCoordinate():
return NUM_X * CUBE_SIZE
def getScreenHeihgt():
return NUM_Y * CUBE_SIZE
def getScreenWidth(show_console):
screen_width=getGameWidth()
if(show_console):
screen_width=screen_width+350
return screen_width
def getConsoleWidth():
return 350
def getConsoleWidthCenter():
return getScreenWidth()+getConsoleWidth()/2
return NUM_Y * CUBE_SIZE

Binary file not shown.

Before

(image error) Size: 412 KiB

Binary file not shown.

Before

(image error) Size: 11 KiB

Binary file not shown.

Before

(image error) Size: 82 KiB

Binary file not shown.

Before

(image error) Size: 285 KiB

Binary file not shown.

Before

(image error) Size: 43 KiB

Binary file not shown.

Before

(image error) Size: 549 KiB

Binary file not shown.

Before

(image error) Size: 67 KiB

Binary file not shown.

Before

(image error) Size: 70 KiB

Binary file not shown.

Before

(image error) Size: 65 KiB

View File

@ -1,3 +1,3 @@
import App
App.init(demo=True)#DEMO=TRUE WILL INIT DEMO MODE WITH RANDOM COLOR GEN
App.init(demo=True)#DEMO=TRUE WILL INIT DEMO MODE WITH RANDOM COLOR GEN

Binary file not shown.

Binary file not shown.

View File

@ -1,114 +0,0 @@
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import Compose, Lambda, ToTensor
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Image
import random
imageSize = (128, 128)
labels = ['carrot','corn', 'potato', 'tomato'] # musi być w kolejności alfabetycznej
fertilizer = {labels[0]: 'kompost', labels[1]: 'saletra amonowa', labels[2]: 'superfosfat', labels[3]:'obornik kurzy'}
#labels = ['corn','tomato'] #uncomment this two lines for 2 crops only
#fertilizer = {labels[0]: 'kompost', labels[1]: 'saletra amonowa'}
torch.manual_seed(42)
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
# device = torch.device("mps") if torch.backends.mps.is_available() else torch.device('cpu')
# print(device)
def getTransformation():
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
transforms.Resize(imageSize),
Lambda(lambda x: x.flatten())])
return transform
def getDataset(train=True):
transform = getTransformation()
if (train):
trainset = datasets.ImageFolder(root='dataset/train', transform=transform)
return trainset
else:
testset = datasets.ImageFolder(root='dataset/test', transform=transform)
return testset
def train(model, dataset, n_iter=100, batch_size=256):
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()
dl = DataLoader(dataset, batch_size=batch_size)
model.train()
for epoch in range(n_iter):
for images, targets in dl:
optimizer.zero_grad()
out = model(images.to(device))
loss = criterion(out, targets.to(device))
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print('epoch: %3d loss: %.4f' % (epoch, loss))
return model
def accuracy(model, dataset):
model.eval()
correct = sum([(model(images.to(device)).argmax(dim=1) == targets.to(device)).sum()
for images, targets in DataLoader(dataset, batch_size=256)])
return correct.float() / len(dataset)
def getModel():
hidden_size = 500
model = nn.Sequential(
nn.Linear(imageSize[0] * imageSize[1] * 3, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, len(labels)),
nn.LogSoftmax(dim=-1)
).to(device)
return model
def saveModel(model, path):
print("Saving model")
torch.save(model.state_dict(), path)
def loadModel(path):
print("Loading model")
model = getModel()
model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # musiałem tutaj dodać to ładowanie z mapowaniem na cpu bo u mnie CUDA nie działa wy pewnie możecie to usunąć
return model
def trainNewModel(n_iter=100, batch_size=256):
trainset = getDataset(True)
model = getModel()
model = train(model, trainset)
return model
def predictLabel(imagePath, model):
image = Image.open(imagePath).convert("RGB")
image = preprocess_image(image)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
with torch.no_grad():
model.eval() # Ustawienie modelu w tryb ewaluacji
output = model(image)
# Znalezienie indeksu klasy o największej wartości prawdopodobieństwa
predicted_class = torch.argmax(output).item()
return labels[predicted_class]
# Znalezienie indeksu klasy o największej wartości prawdopodobieństwa
predicted_class = torch.argmax(output).item()
return labels[predicted_class]
def preprocess_image(image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = getTransformation()
image = transform(image).unsqueeze(0) # Add batch dimension
image = image.to(device) # Move the image tensor to the same device as the model
return image

View File

@ -1,266 +0,0 @@
[
[
"tomato",
"corn",
"tomato",
"tomato",
"corn",
"tomato",
"tomato",
"corn",
"carrot",
"potato",
"potato",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato"
],
[
"corn",
"carrot",
"potato",
"potato",
"carrot",
"potato",
"potato",
"carrot",
"potato",
"potato",
"carrot",
"corn",
"tomato",
"corn",
"carrot",
"corn",
"tomato",
"corn",
"tomato",
"corn"
],
[
"carrot",
"potato",
"potato",
"carrot",
"corn",
"carrot",
"potato",
"carrot",
"potato",
"carrot",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato"
],
[
"potato",
"potato",
"carrot",
"corn",
"tomato",
"corn",
"carrot",
"corn",
"carrot",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn"
],
[
"potato",
"carrot",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato"
],
[
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn"
],
[
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato"
],
[
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn"
],
[
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"carrot",
"corn",
"tomato"
],
[
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"carrot",
"potato",
"tomato",
"potato"
],
[
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"carrot",
"corn",
"carrot",
"corn",
"carrot",
"potato",
"potato",
"tomato",
"potato"
],
[
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"corn",
"tomato",
"potato",
"potato",
"carrot",
"corn",
"tomato"
]
]

View File

@ -1,266 +0,0 @@
[
[
"potato",
"carrot",
"carrot",
"potato",
"potato",
"carrot",
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"potato",
"carrot",
"potato",
"carrot",
"carrot",
"potato",
"potato",
"potato",
"carrot"
],
[
"tomato",
"potato",
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"carrot",
"carrot",
"carrot",
"carrot",
"carrot",
"potato",
"potato",
"carrot",
"potato"
],
[
"corn",
"carrot",
"corn",
"carrot",
"potato",
"carrot",
"carrot",
"corn",
"tomato",
"corn",
"carrot",
"potato",
"potato",
"carrot",
"carrot",
"corn",
"carrot",
"potato",
"potato",
"tomato"
],
[
"tomato",
"potato",
"carrot",
"corn",
"tomato",
"corn",
"carrot",
"carrot",
"corn",
"carrot",
"potato",
"carrot",
"carrot",
"corn",
"carrot",
"carrot",
"potato",
"potato",
"tomato",
"tomato"
],
[
"tomato",
"potato",
"carrot",
"carrot",
"corn",
"carrot",
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"potato",
"tomato",
"tomato",
"potato",
"potato"
],
[
"potato",
"tomato",
"potato",
"potato",
"tomato",
"corn",
"carrot",
"potato",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot"
],
[
"potato",
"potato",
"tomato",
"tomato",
"corn",
"carrot",
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"potato"
],
[
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"potato",
"potato",
"tomato",
"tomato",
"potato",
"carrot",
"potato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"corn",
"carrot"
],
[
"carrot",
"potato",
"tomato",
"potato",
"carrot",
"carrot",
"carrot",
"potato",
"tomato",
"potato",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"carrot",
"potato",
"tomato",
"corn"
],
[
"potato",
"tomato",
"tomato",
"potato",
"carrot",
"potato",
"potato",
"carrot",
"potato",
"potato",
"carrot",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"corn",
"tomato",
"potato",
"tomato"
],
[
"potato",
"tomato",
"corn",
"tomato",
"potato",
"potato",
"potato",
"potato",
"carrot",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"corn",
"tomato",
"potato"
],
[
"potato",
"potato",
"carrot",
"corn",
"carrot",
"potato",
"potato",
"potato",
"carrot",
"carrot",
"carrot",
"potato",
"carrot",
"carrot",
"potato",
"carrot",
"corn",
"carrot",
"corn",
"tomato"
]
]

View File

@ -1,266 +0,0 @@
[
[
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"potato",
"potato",
"carrot",
"potato"
],
[
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"potato",
"potato",
"potato"
],
[
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"potato",
"carrot"
],
[
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato"
],
[
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot"
],
[
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato"
],
[
"corn",
"corn",
"tomato",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"potato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot"
],
[
"tomato",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato"
],
[
"carrot",
"potato",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"carrot"
],
[
"potato",
"potato",
"corn",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato"
],
[
"potato",
"carrot",
"tomato",
"corn",
"tomato",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"corn",
"corn",
"tomato",
"carrot",
"carrot",
"tomato",
"carrot"
],
[
"carrot",
"tomato",
"carrot",
"tomato",
"carrot",
"tomato",
"corn",
"tomato",
"carrot",
"tomato",
"corn",
"corn",
"tomato",
"corn",
"tomato",
"carrot",
"tomato",
"tomato",
"carrot",
"tomato"
]
]

View File

@ -1,24 +0,0 @@
Required packages:
pygame,matplotlib,sklearn,pandas
How to install:
pip install pygame
pip install matplotlib
pip install scikit-learn
pip install pandas
How to run:
For BFS3:
-in App.py: -change bfs3_flag to True (other flags need to be disabled) -ensure that in App.py in BFS3 you give goalTreasure
-in Image.py change range in function return_random_plant to (0,5)
For Astar:
in App.py change Astar to True (other flags need to be disabled)
-in Image.py change range in function return_random_plant to (0,7)
For Astar2:
-in App.py change Astar2 flag to True (other flags need to be disabled)
-in Image.py change range in function return_random_plant to (0,7)
For Tree:
-in App.py change TreeFlag to True (other flags need to be disabled)
-in Image.py change range in function return_random_plant to (0,5)
For neuralnetwork:
-in App.py change nnFlag to True (other flags need to be disabled)
For final_show (neuralnetwork+tree+genetic algorithm)
-in App.py change finalFlag to True (other flags need to be disabled)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,87 +0,0 @@
tab = []
def iter(odp, i):
if i == 0:
j = ""
for k in range(0, 101, 28):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 1:
j = ""
for k in range(0, 101, 28):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 2:
j = ""
for k in range(2):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 3:
j = ""
for k in range(0, 101, 34):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 4:
j = ""
for k in range(0, 101, 40):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 5:
j = ""
for k in range(0, 4, 2):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 6:
j = ""
for k in range(0, 4, 2):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 7:
j = ""
for k in range(0, 4, 2):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 8:
j=""
for k in range(4):
odp += f"{k},"
odp = iter(odp, i + 1)
j = str(k)
odp = odp[:-(len(j) + 1)]
return odp
if i == 9:
global licznik
x = odp.split(",")
if (int(x[0]) > 60 or int(x[1]) > 90 or int(x[2]) == 1 or int(x[3]) > 70 or int(x[4]) <= 10 or int(x[5]) == 0 or int(x[5]) == 4 or int(x[6]) == 2 or int(x[6]) == 3 or int(x[7]) == 0 or int(x[8]) == 1):
odp += "0"
else:
odp += "1"
print(odp)
tab.append(odp)
licznik += 1
return odp[:-1]
iter("", 0)