Merge old branches to refactor due to merge it with master #22
15
App.py
15
App.py
@ -9,9 +9,7 @@ import Osprzet
|
||||
import Ui
|
||||
import BFS
|
||||
import AStar
|
||||
import random
|
||||
import Condition
|
||||
import Drzewo
|
||||
|
||||
|
||||
bfs1_flag=False
|
||||
bfs2_flag=False #Change this lines to show different bfs implementation
|
||||
@ -36,8 +34,7 @@ ui=Ui.Ui(screen)
|
||||
#Tractor creation
|
||||
traktor_slot = pole.get_slot_from_cord((0, 0))
|
||||
traktor = Tractor.Tractor(traktor_slot, screen, Osprzet.opryskiwacz,clock,bfs2_flag)
|
||||
condition=Condition.Condition()
|
||||
drzewo=Drzewo.Drzewo()
|
||||
|
||||
|
||||
def init_demo(): #Demo purpose
|
||||
old_info=""
|
||||
@ -117,14 +114,10 @@ def init_demo(): #Demo purpose
|
||||
print_to_console("Nie można znaleźć ścieżki A*") # Wyświetl komunikat, jeśli nie znaleziono ścieżki
|
||||
|
||||
if(TreeFlag):
|
||||
drzewo.treeLearn()
|
||||
drzewo.plotTree()
|
||||
print("Decyzja to: ",drzewo.makeDecision([[10,60,0,1,1,0,20,1,20]]))
|
||||
#do moves and condtion cycles
|
||||
traktor.move_forward(pole)
|
||||
traktor.tree_move()
|
||||
start_flag=False
|
||||
# demo_move()
|
||||
condition.cycle() #powinno zostac wrzucone razem z getCondition do ruchu traktora. Aktualnie tutaj by zobaczyc czy dziala
|
||||
condition.getCondition()
|
||||
old_info=get_info(old_info)
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
|
@ -38,6 +38,10 @@ class Condition:
|
||||
self.temperature=self.setRandomTemperature()
|
||||
self.clock=self.clock+1
|
||||
|
||||
def return_condition(self):
|
||||
return [self.temperature,self.rain,self.season,self.currentTime]
|
||||
|
||||
|
||||
def getCondition(self):
|
||||
print(f"Aktualny czas: {Climate.time[self.currentTime]},opady: {Climate.rain[self.rain]},temperatura: {Climate.temperature[self.temperature]}, pora roku: {Climate.seasons[self.season]}")
|
||||
|
@ -1,3 +1,3 @@
|
||||
plant_water_level,tractor_water_level,temperature,rain,season,current_time,growth,disease,fertility,action
|
||||
80,60,3,2,1,0,20,1,20,0
|
||||
20,60,3,0,1,0,20,1,20,1
|
||||
plant_water_level,growth,disease,fertility,tractor_water_level,temperature,rain,season,current_time,action
|
||||
80,20,0,90,40,2,0,1,0,0
|
||||
50,20,0,90,80,2,0,1,0,1
|
|
@ -2,7 +2,7 @@ from sklearn import tree as skltree
|
||||
import pandas,os
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
atributes=['plant_water_level','tractor_water_level','temperature','rain','season','current_time','growth','disease','fertility'] #Columns in CSV file should be in the same order
|
||||
atributes=['plant_water_level','growth','disease','fertility','tractor_water_level','temperature','rain','season','current_time'] #Columns in CSV file has to be in the same order
|
||||
class Drzewo:
|
||||
def __init__(self):
|
||||
self.tree=self.treeLearn()
|
||||
@ -12,14 +12,14 @@ class Drzewo:
|
||||
x=csvdata[atributes]
|
||||
decision=csvdata['action']
|
||||
self.tree=skltree.DecisionTreeClassifier()
|
||||
self.tree=self.tree.fit(x,decision)
|
||||
self.tree=self.tree.fit(x.values,decision)
|
||||
|
||||
def plotTree(self):
|
||||
plt.figure()
|
||||
skltree.plot_tree(self.tree,filled=True,feature_names=atributes)
|
||||
plt.title("Drzewo decyzyjne wytrenowane na przygotowanych danych")
|
||||
plt.savefig('tree.png')
|
||||
plt.show()
|
||||
|
||||
def makeDecision(self,values):
|
||||
action=self.tree.predict(values) #0- nie podlewac, 1-podlewac
|
||||
action=self.tree.predict([values]) #0- nie podlewac, 1-podlewac
|
||||
return action
|
2
Image.py
2
Image.py
@ -37,7 +37,7 @@ class Image:
|
||||
self.gasStation_image=pygame.transform.scale(gasStation,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||
|
||||
def return_random_plant(self):
|
||||
x=random.randint(0,7)
|
||||
x=random.randint(0,5) #disabled dirt and mud generation
|
||||
keys=list(self.plants_image_dict.keys())
|
||||
plant=keys[x]
|
||||
return (plant,self.plants_image_dict[plant])
|
||||
|
@ -110,6 +110,9 @@ class Roslina:
|
||||
def return_stan(self):
|
||||
return self.stan
|
||||
|
||||
def return_stan_for_tree(self):
|
||||
return self.stan.return_stan_for_tree()
|
||||
|
||||
def get_hydrate_stats(self):
|
||||
return self.stan.return_hydrate()
|
||||
|
||||
|
2
Slot.py
2
Slot.py
@ -83,3 +83,5 @@ class Slot:
|
||||
elif(index==-1):
|
||||
pass
|
||||
|
||||
def return_stan_for_tree(self):
|
||||
return self.plant.return_stan_for_tree()
|
4
Stan.py
4
Stan.py
@ -57,5 +57,9 @@ class Stan:
|
||||
return "Zdrowa"
|
||||
if(self.choroba==1):
|
||||
return "Chora"
|
||||
|
||||
def return_stan_for_tree(self):
|
||||
return [self.nawodnienie,self.wzrost,self.choroba,self.zyznosc]
|
||||
|
||||
def report_all(self):
|
||||
return f"Nawodnienie: {self.nawodnienie} Zyznosc: {self.zyznosc} Wzrost: {self.wzrost} Choroba: {self.return_disease_as_string()}"
|
17
Tractor.py
17
Tractor.py
@ -7,6 +7,12 @@ import displayControler as dCon
|
||||
import Slot
|
||||
import Osprzet
|
||||
import Node
|
||||
import Condition
|
||||
import Drzewo
|
||||
|
||||
condition=Condition.Condition()
|
||||
drzewo=Drzewo.Drzewo()
|
||||
|
||||
|
||||
tab = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
|
||||
@ -57,6 +63,17 @@ class Tractor:
|
||||
self.current_tractor_image = self.tractor_images[self.direction]
|
||||
self.draw_tractor()
|
||||
|
||||
def tree_move(self):
|
||||
drzewo.treeLearn()
|
||||
drzewo.plotTree()
|
||||
slot_attributes=self.slot.return_stan_for_tree()
|
||||
climate_attributes=condition.return_condition()
|
||||
attributes=[]
|
||||
attributes=attributes+slot_attributes+[self.waterLevel]+climate_attributes
|
||||
print("Decyzja czy podlac:",drzewo.makeDecision(attributes),"Atrybuty tego stanu to:",attributes)
|
||||
#TODO SNAKE MOVE AND USING drzewo.makeDecision(attributes)for each slot. Also we need to cycle climate for each slot change by
|
||||
#condition.cycle()
|
||||
#condition.getCondition()
|
||||
def turn_right(self):
|
||||
# zmiana kierunku w prawo
|
||||
direction_map = {
|
||||
|
Loading…
Reference in New Issue
Block a user