Merge genetic_algorithms with final_show branch #28
23
App.py
23
App.py
@ -10,6 +10,7 @@ import Ui
|
|||||||
import BFS
|
import BFS
|
||||||
import AStar
|
import AStar
|
||||||
import neuralnetwork
|
import neuralnetwork
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
bfs1_flag=False
|
bfs1_flag=False
|
||||||
@ -20,8 +21,9 @@ Astar2 = False
|
|||||||
if bfs3_flag or Astar or Astar2:
|
if bfs3_flag or Astar or Astar2:
|
||||||
Pole.stoneFlag = True
|
Pole.stoneFlag = True
|
||||||
TreeFlag=False
|
TreeFlag=False
|
||||||
nnFlag=True
|
nnFlag=False
|
||||||
newModel=False
|
newModel=False
|
||||||
|
finalFlag = True
|
||||||
|
|
||||||
pygame.init()
|
pygame.init()
|
||||||
show_console=True
|
show_console=True
|
||||||
@ -43,7 +45,15 @@ def init_demo(): #Demo purpose
|
|||||||
old_info=""
|
old_info=""
|
||||||
traktor.draw_tractor()
|
traktor.draw_tractor()
|
||||||
time.sleep(2)
|
time.sleep(2)
|
||||||
pole.randomize_colors(nnFlag)
|
if not finalFlag:
|
||||||
|
pole.randomize_colors(nnFlag)
|
||||||
|
else:
|
||||||
|
population = 120
|
||||||
|
iterat = 2500
|
||||||
|
roulette = True
|
||||||
|
with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
garden_data = json.load(file)
|
||||||
|
pole.setPlantsByList(garden_data)
|
||||||
traktor.draw_tractor()
|
traktor.draw_tractor()
|
||||||
start_flag=True
|
start_flag=True
|
||||||
while True:
|
while True:
|
||||||
@ -128,11 +138,16 @@ def init_demo(): #Demo purpose
|
|||||||
print_to_console("sieć nuronowa nauczona")
|
print_to_console("sieć nuronowa nauczona")
|
||||||
print('model został wygenerowany')
|
print('model został wygenerowany')
|
||||||
else:
|
else:
|
||||||
model = neuralnetwork.loadModel('model.pth')
|
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||||
print_to_console("model został załądowny")
|
print_to_console("model został załądowny")
|
||||||
testset = neuralnetwork.getDataset(False)
|
testset = neuralnetwork.getDataset(False)
|
||||||
print(neuralnetwork.accuracy(model, testset))
|
print(neuralnetwork.accuracy(model, testset))
|
||||||
traktor.snake_move_predict_plant(pole, model)
|
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Fertilizer'], actions=[traktor.fertilize_slot])
|
||||||
|
if(finalFlag):
|
||||||
|
pass
|
||||||
|
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||||
|
Tractor.drzewo.treeLearn()
|
||||||
|
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Decision'], actions=[traktor.irigate_slot_NN])
|
||||||
start_flag=False
|
start_flag=False
|
||||||
# demo_move()
|
# demo_move()
|
||||||
old_info=get_info(old_info)
|
old_info=get_info(old_info)
|
||||||
|
@ -8,7 +8,7 @@ class Drzewo:
|
|||||||
self.tree=self.treeLearn()
|
self.tree=self.treeLearn()
|
||||||
|
|
||||||
def treeLearn(self):
|
def treeLearn(self):
|
||||||
csvdata=pandas.read_csv('Data/dataTree.csv')
|
csvdata=pandas.read_csv('Data/dataTree2.csv')
|
||||||
#csvdata = pandas.read_csv('Data/dataTree2.csv')
|
#csvdata = pandas.read_csv('Data/dataTree2.csv')
|
||||||
x=csvdata[atributes]
|
x=csvdata[atributes]
|
||||||
decision=csvdata['action']
|
decision=csvdata['action']
|
||||||
|
22
Image.py
22
Image.py
@ -80,3 +80,25 @@ def getRandomImageFromDataBase():
|
|||||||
image = pygame.image.load(imgPath)
|
image = pygame.image.load(imgPath)
|
||||||
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||||
return image, label, imgPath
|
return image, label, imgPath
|
||||||
|
|
||||||
|
def getSpedifiedImageFromDatabase(label):
|
||||||
|
folderPath = f"dataset/test/{label}"
|
||||||
|
files = os.listdir(folderPath)
|
||||||
|
random_image = random.choice(files)
|
||||||
|
imgPath = os.path.join(folderPath, random_image)
|
||||||
|
|
||||||
|
while imgPath in imagePathList:
|
||||||
|
for event in pygame.event.get():
|
||||||
|
if event.type == pygame.QUIT:
|
||||||
|
quit()
|
||||||
|
label = random.choice(neuralnetwork.labels)
|
||||||
|
folderPath = f"dataset/test/{label}"
|
||||||
|
files = os.listdir(folderPath)
|
||||||
|
random_image = random.choice(files)
|
||||||
|
imgPath = os.path.join(folderPath, random_image)
|
||||||
|
|
||||||
|
imagePathList.append(imgPath)
|
||||||
|
|
||||||
|
image = pygame.image.load(imgPath)
|
||||||
|
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||||
|
return image, label, imgPath
|
||||||
|
8
Pole.py
8
Pole.py
@ -62,6 +62,14 @@ class Pole:
|
|||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
self.slot_dict[coordinates].set_random_plant(nn)
|
self.slot_dict[coordinates].set_random_plant(nn)
|
||||||
|
def setPlantsByList(self, plantList):
|
||||||
|
pygame.display.update()
|
||||||
|
time.sleep(3)
|
||||||
|
for coordinates in self.slot_dict:
|
||||||
|
if(coordinates==(0,0)):
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
self.slot_dict[coordinates].set_specifided_plant(plantList[coordinates[1]][coordinates[0]])
|
||||||
|
|
||||||
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
|
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
|
||||||
self.get_slot_from_cord(coordinates).color_change(color)
|
self.get_slot_from_cord(coordinates).color_change(color)
|
||||||
|
7
Slot.py
7
Slot.py
@ -49,6 +49,11 @@ class Slot:
|
|||||||
# print(self.plant_image)
|
# print(self.plant_image)
|
||||||
self.plant=Roslina.Roslina(self.label)
|
self.plant=Roslina.Roslina(self.label)
|
||||||
self.set_image()
|
self.set_image()
|
||||||
|
|
||||||
|
def set_specifided_plant(self, plant):
|
||||||
|
self.plant_image, self.label, self.imagePath = self.specified_plant_dataset(plant)
|
||||||
|
self.plant=Roslina.Roslina(self.label)
|
||||||
|
self.set_image()
|
||||||
|
|
||||||
def set_image(self):
|
def set_image(self):
|
||||||
if self.plant_image is None:
|
if self.plant_image is None:
|
||||||
@ -75,6 +80,8 @@ class Slot:
|
|||||||
return self.image_loader.return_random_plant()
|
return self.image_loader.return_random_plant()
|
||||||
def random_plant_dataset(self):
|
def random_plant_dataset(self):
|
||||||
return Image.getRandomImageFromDataBase()
|
return Image.getRandomImageFromDataBase()
|
||||||
|
def specified_plant_dataset(self, plant):
|
||||||
|
return Image.getSpedifiedImageFromDatabase(plant)
|
||||||
|
|
||||||
def return_plant(self):
|
def return_plant(self):
|
||||||
return self.plant
|
return self.plant
|
||||||
|
24
Tractor.py
24
Tractor.py
@ -30,6 +30,7 @@ class Tractor:
|
|||||||
DIRECTION_SOUTH = 'S'
|
DIRECTION_SOUTH = 'S'
|
||||||
DIRECTION_WEST = 'W'
|
DIRECTION_WEST = 'W'
|
||||||
DIRECTION_EAST = 'E'
|
DIRECTION_EAST = 'E'
|
||||||
|
|
||||||
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
|
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
|
||||||
self.tractor_images = {
|
self.tractor_images = {
|
||||||
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
|
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
|
||||||
@ -193,8 +194,7 @@ class Tractor:
|
|||||||
self.turn_left()
|
self.turn_left()
|
||||||
print("podlanych slotów: ", str(counter))
|
print("podlanych slotów: ", str(counter))
|
||||||
|
|
||||||
def snake_move_predict_plant(self, pole, model):
|
def snake_move_predict_plant(self, pole, model, headers, actions = None):
|
||||||
headers=['Coords','Real plant','Predicted plant','Result','Fertilizer']
|
|
||||||
print(format_string_nn.format(*headers))
|
print(format_string_nn.format(*headers))
|
||||||
initPos = (self.slot.x_axis, self.slot.y_axis)
|
initPos = (self.slot.x_axis, self.slot.y_axis)
|
||||||
count = 0
|
count = 0
|
||||||
@ -207,9 +207,11 @@ class Tractor:
|
|||||||
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
|
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
|
||||||
|
|
||||||
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
|
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
|
||||||
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
# print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||||
|
for a in actions:
|
||||||
|
a(predictedLabel)
|
||||||
if self.slot.label != predictedLabel:
|
if self.slot.label != predictedLabel:
|
||||||
self.slot.mark_visited()
|
# self.slot.mark_visited()
|
||||||
count += 1
|
count += 1
|
||||||
self.move_forward(pole, False)
|
self.move_forward(pole, False)
|
||||||
if i % 2 == 0 and i != dCon.NUM_Y - 1:
|
if i % 2 == 0 and i != dCon.NUM_Y - 1:
|
||||||
@ -220,7 +222,19 @@ class Tractor:
|
|||||||
self.turn_left()
|
self.turn_left()
|
||||||
self.move_forward(pole, False)
|
self.move_forward(pole, False)
|
||||||
self.turn_left()
|
self.turn_left()
|
||||||
print(f"Dobrze nawiezionych roślin: {20*12-count}, źle nawiezionych roślin: {count}")
|
print(f"Dobrze rozpoznanych roślin: {20*12-count}, źle rozpoznanych roślin: {count}")
|
||||||
|
|
||||||
|
def fertilize_slot(self, predictedLabel):
|
||||||
|
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||||
|
if self.slot.label != predictedLabel:
|
||||||
|
self.slot.mark_visited()
|
||||||
|
|
||||||
|
def irigate_slot_NN(self, predictedLabel):
|
||||||
|
attributes=self.get_attributes()
|
||||||
|
decision = drzewo.makeDecision(attributes)
|
||||||
|
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",decision))
|
||||||
|
condition.cycle()
|
||||||
|
self.waterLevel = random.randint(0, 100)
|
||||||
|
|
||||||
def snake_move(self,pole,x,y):
|
def snake_move(self,pole,x,y):
|
||||||
next_slot_coordinates=(x,y)
|
next_slot_coordinates=(x,y)
|
||||||
|
@ -77,7 +77,7 @@ def saveModel(model, path):
|
|||||||
def loadModel(path):
|
def loadModel(path):
|
||||||
print("Loading model")
|
print("Loading model")
|
||||||
model = getModel()
|
model = getModel()
|
||||||
model.load_state_dict(torch.load(path))
|
model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # musiałem tutaj dodać to ładowanie z mapowaniem na cpu bo u mnie CUDA nie działa wy pewnie możecie to usunąć
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def trainNewModel(n_iter=100, batch_size=256):
|
def trainNewModel(n_iter=100, batch_size=256):
|
||||||
|
Loading…
Reference in New Issue
Block a user