Merge master with genetic_algorithms branch #29
210
GeneticAlgorithm2.py
Normal file
210
GeneticAlgorithm2.py
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
from displayControler import NUM_X, NUM_Y
|
||||||
|
|
||||||
|
# Definiowanie stałych dla roślin i plonów
|
||||||
|
plants = ['corn', 'potato', 'tomato', 'carrot']
|
||||||
|
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
|
||||||
|
yield_reduction = {
|
||||||
|
'corn': {'corn': -4.5, 'potato': -3, 'tomato': -7, 'carrot': -7},
|
||||||
|
'potato': {'corn': None, 'potato': -5, 'tomato': -10, 'carrot': -6},
|
||||||
|
'tomato': {'corn': None, 'potato': -5, 'tomato': -7, 'carrot': -7},
|
||||||
|
'carrot': {'corn': None, 'potato': -5, 'tomato': -4, 'carrot': -7}
|
||||||
|
}
|
||||||
|
yield_multiplier = {'corn': 1.25, 'potato': 1.17, 'tomato': 1.22, 'carrot': 1.13}
|
||||||
|
|
||||||
|
|
||||||
|
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
|
||||||
|
def generate_garden(rows=20, cols=12):
|
||||||
|
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do obliczania liczby plonów
|
||||||
|
def calculate_yields(garden):
|
||||||
|
rows = len(garden)
|
||||||
|
cols = len(garden[0])
|
||||||
|
|
||||||
|
total_yields = 0
|
||||||
|
|
||||||
|
for i in range(rows):
|
||||||
|
for j in range(cols):
|
||||||
|
plant = garden[i][j]
|
||||||
|
yield_count = initial_yields[plant]
|
||||||
|
|
||||||
|
# Sprawdzanie sąsiadów
|
||||||
|
neighbors = [
|
||||||
|
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
|
||||||
|
]
|
||||||
|
|
||||||
|
for ni, nj in neighbors:
|
||||||
|
if 0 <= ni < rows and 0 <= nj < cols:
|
||||||
|
neighbor_plant = garden[ni][nj]
|
||||||
|
|
||||||
|
if yield_reduction[plant][neighbor_plant] is not None: #jeśli jest wartość None to nie zostaje wcale dodane
|
||||||
|
yield_count += yield_reduction[plant][neighbor_plant]
|
||||||
|
|
||||||
|
yield_count *= yield_multiplier[plant]
|
||||||
|
total_yields += yield_count
|
||||||
|
|
||||||
|
return total_yields
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
|
||||||
|
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
|
||||||
|
garden = generate_garden(rows, cols)
|
||||||
|
total_yields = calculate_yields(garden)
|
||||||
|
return [garden, total_yields]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
|
||||||
|
def line():
|
||||||
|
path = []
|
||||||
|
flag = False
|
||||||
|
x = random.randint(4, 8)
|
||||||
|
position = (0, x)
|
||||||
|
path.append(position)
|
||||||
|
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
|
||||||
|
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
|
||||||
|
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
|
||||||
|
w = [0.6, 0.2, 0.2]
|
||||||
|
position2 = random.choices(p, w)[0]
|
||||||
|
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
|
||||||
|
path.append(position2)
|
||||||
|
position = position2
|
||||||
|
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
|
||||||
|
flag = True
|
||||||
|
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
|
||||||
|
for i in range(len(path) - 1):
|
||||||
|
if path[i + 1][0] - path[i][0] == 1:
|
||||||
|
info.append(NUM_Y - path[i][1])
|
||||||
|
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
|
||||||
|
if path[-1:][0][1] == 0:
|
||||||
|
x = NUM_Y
|
||||||
|
else:
|
||||||
|
x = 0
|
||||||
|
while len(info) < NUM_X:
|
||||||
|
info.append(x)
|
||||||
|
# return path, info
|
||||||
|
return info
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania potomstwa
|
||||||
|
def divide_gardens(garden1, garden2):
|
||||||
|
info = line()
|
||||||
|
new_garden1 = [[] for _ in range(NUM_Y)]
|
||||||
|
new_garden2 = [[] for _ in range(NUM_Y)]
|
||||||
|
for i in range(NUM_X):
|
||||||
|
for j in range(NUM_Y):
|
||||||
|
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
|
||||||
|
if j < info[i]:
|
||||||
|
new_garden1[j].append(garden1[j][i])
|
||||||
|
new_garden2[j].append(garden2[j][i])
|
||||||
|
else:
|
||||||
|
new_garden1[j].append(garden2[j][i])
|
||||||
|
new_garden2[j].append(garden1[j][i])
|
||||||
|
|
||||||
|
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do mutacji danej planszy/ogrodu
|
||||||
|
def mutation(garden, not_used):
|
||||||
|
new_garden = copy.deepcopy(garden)
|
||||||
|
for i in range(NUM_X):
|
||||||
|
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
|
||||||
|
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
|
||||||
|
new_garden[x][i] = random.choice(other_plants)
|
||||||
|
return [new_garden, calculate_yields(new_garden)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania pierwszego pokolenia
|
||||||
|
def generate(n):
|
||||||
|
generation = []
|
||||||
|
for i in range(n * 3):
|
||||||
|
generation.append(generate_garden_with_yields())
|
||||||
|
generation.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
return generation[:n]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
|
||||||
|
def sum_yields(x):
|
||||||
|
s = 0
|
||||||
|
for i in range(len(x)):
|
||||||
|
s += x[i][1]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
roulette = True
|
||||||
|
attemps = 150
|
||||||
|
iterat = 2500
|
||||||
|
population = 100
|
||||||
|
best = []
|
||||||
|
for a in range(attemps):
|
||||||
|
generation = generate(population)
|
||||||
|
print(generation[0][1])
|
||||||
|
for i in range(iterat): # ile iteracji - nowych pokoleń
|
||||||
|
print(a, i)
|
||||||
|
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
|
||||||
|
j = 0
|
||||||
|
while j < (
|
||||||
|
population - (
|
||||||
|
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
|
||||||
|
if roulette: # zasada ruletki -> "2 rzuty kulką"
|
||||||
|
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
|
||||||
|
z = []
|
||||||
|
if s == 0: # wtedy każdy osobnik ma takie same szanse
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
else:
|
||||||
|
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
|
||||||
|
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
|
||||||
|
for i in range(population):
|
||||||
|
weights.append(generation[i][1] / s)
|
||||||
|
pos.append(i)
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
else: # metoda rankingu
|
||||||
|
z = random.sample(range(0, int(population // 1.7)), 2)
|
||||||
|
|
||||||
|
# krzyzowanie 90% szans, mutacja 10% szans
|
||||||
|
function = [divide_gardens, mutation]
|
||||||
|
weight = [0.9, 0.1]
|
||||||
|
fun = random.choices(function, weight)[0]
|
||||||
|
h = fun(generation[z[0]][0], generation[z[1]][0])
|
||||||
|
if len(h[0]) == 2:
|
||||||
|
new_generation.append(h[0])
|
||||||
|
new_generation.append(h[1])
|
||||||
|
j += 2
|
||||||
|
else:
|
||||||
|
new_generation.append(h)
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
|
||||||
|
generation = new_generation[:population]
|
||||||
|
|
||||||
|
best.append(generation[0])
|
||||||
|
|
||||||
|
best.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
|
||||||
|
# Zapis do pliku
|
||||||
|
# for i in range(len(best)):
|
||||||
|
# print(best[i][1], calculate_yields(best[i][0]))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
|
||||||
|
# json.dump(best[0][0], file, indent=4)
|
||||||
|
#
|
||||||
|
# print("Dane zapisane do pliku")
|
||||||
|
|
||||||
|
# Odczyt z pliku
|
||||||
|
# with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
# garden_data = json.load(file)
|
||||||
|
#
|
||||||
|
# print("Odczytane dane ogrodu:")
|
||||||
|
# for row in garden_data:
|
||||||
|
# print(row)
|
||||||
|
#
|
||||||
|
# print(calculate_yields(garden_data))
|
||||||
|
# if best[0][0] == garden_data:
|
||||||
|
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))
|
Loading…
Reference in New Issue
Block a user