Zaimplementowanie A*

This commit is contained in:
s481832 2024-04-26 15:46:02 +02:00
parent a8814a763b
commit 2698b33a99
2 changed files with 81 additions and 16 deletions

33
main.py
View File

@ -174,13 +174,29 @@ def main_fields_tests():
pygame.display.flip()
# endregion
cost_map = {}
def generate_cost_map():
adult_animal_cost = 10
baby_animal_cost = 5
for animal in Animals:
if animal.adult:
cost_map[(animal.x + 1, animal.y + 1)] = baby_animal_cost
cost_map[(animal.x + 1, animal.y)] = baby_animal_cost
cost_map[(animal.x, animal.y + 1)] = baby_animal_cost
cost_map[(animal.x, animal.y)] = adult_animal_cost
else:
cost_map[(animal.x, animal.y)] = baby_animal_cost
# Inne pola z różnym kosztem
# cost_map[(x, y)] = cost_value
# region Main Code
def main():
initial_state = (0,0,'S')
agent = Agent(initial_state, 'images/agent1.png', GRID_SIZE)
obstacles = generate_obstacles()
actions = []
clock = pygame.time.Clock()
@ -199,6 +215,7 @@ def main():
draw_gates()
if not spawned:
spawn_all_animals()
generate_cost_map()
for animal in Animals:
animal._feed = 2 # Ustawienie aby zwierzę było głodne
spawned = True
@ -213,13 +230,21 @@ def main():
pygame.time.wait(200)
else:
animal = random.choice(Animals)
actions = graphsearch(agent.istate, (animal.x, animal.y), GRID_WIDTH, GRID_HEIGHT, obstacles)
goal = (animal.x, animal.y)
# --- Zaznaczenie celu ---
pygame.draw.rect(screen, (255, 0, 0), (animal.x * GRID_SIZE, animal.y * GRID_SIZE, GRID_SIZE, GRID_SIZE))
pygame.display.flip()
pygame.time.delay(2000)
# ------------------------
actions = graphsearch(agent.istate, goal, GRID_WIDTH, GRID_HEIGHT, obstacles, cost_map)
# endregion
if __name__ == "__main__":
debug_mode = False # Jeśli True to pokazuje dostępne pola
DEBUG_MODE = False # Jeśli True to pokazuje dostępne pola
if debug_mode:
if DEBUG_MODE:
main_fields_tests()
else:
main()

View File

@ -1,3 +1,7 @@
from queue import PriorityQueue
DEFAULT_COST_VALUE = 1
def is_border(x, y, max_x, max_y):
return 0 <= x < max_x and 0 <= y < max_y
@ -25,32 +29,52 @@ def succ(current_state, max_x, max_y, obstacles):
return successors
def graphsearch(istate, goal, max_x, max_y, obstacles):
fringe = [{"state": istate, "parent": None, "action": None}]
def graphsearch(istate, goal, max_x, max_y, obstacles, cost_map):
fringe = PriorityQueue()
explored = set()
while fringe:
elem = fringe.pop(0)
state = elem["state"]
fringe.put((0, (istate, None , None)))
while not fringe.empty():
_, node = fringe.get()
state, _, _ = node
if goaltest(state, goal):
return build_action_sequence(elem)
return build_action_sequence(node)
explored.add(state)
successors = succ(state, max_x, max_y, obstacles)
for new_state, action in successors:
if new_state not in fringe and new_state not in explored:
fringe.append({"state": new_state, "parent": elem, "action": action})
new_node = (new_state, node, action)
p_new_state = current_cost(node, cost_map) + heuristic(state, goal)
if not is_state_in_queue(new_state, fringe) and new_state not in explored:
fringe.put((p_new_state, new_node))
elif is_state_in_queue(new_state, fringe):
for i, (p_existing_state, (existing_state, _, _)) in enumerate(fringe.queue):
if existing_state == new_state and p_existing_state > p_new_state:
fringe.queue[i] = (p_new_state, new_node)
else:
break
return False
def is_state_in_queue(state, queue):
for _, (s, _, _) in queue.queue:
if s == state:
return True
return False
def build_action_sequence(node):
actions = []
while node["parent"]:
actions.append(node["action"])
node = node["parent"]
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
_, parent, action = node
actions.append(action)
node = parent
actions.reverse()
return actions
@ -58,3 +82,19 @@ def goaltest(state, goal):
x, y, _ = state
goal_x, goal_y = goal
return (x,y) == (goal_x, goal_y)
def current_cost(node, cost_map):
cost = 0
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
_, parent, action = node
# Dodaj koszt pola z mapy kosztów tylko jeśli akcja to "Forward"
if action == 'Go Forward':
state, _, _ = node
cost += cost_map.get(state[:2], DEFAULT_COST_VALUE) # Pobiera koszt przejścia przez dane pole, a jeśli koszt nie jest zdefiniowany to bierze wartość domyślną
node = parent # Przejdź do rodzica
return cost
def heuristic(state, goal):
x, y, _ = state
goal_x, goal_y = goal
return abs(x - goal_x) + abs(y - goal_y) # Odległość Manhattana do celu