Merge pull request 'Przeszukiwanie-stanów-A_star' (#2) from Przeszukiwanie-stanów-A_star into master

Reviewed-on: s481865/Male_zoo#2
This commit is contained in:
s481832 2024-05-08 12:00:15 +02:00
commit 53cfae3fb8
42 changed files with 488 additions and 207 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.pyc

5
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,5 @@
{
"python.analysis.extraPaths": [
"./Animals"
]
}

View File

@ -1,5 +1,5 @@
import pygame import pygame
from abc import ABC, abstractmethod from abc import abstractmethod
class Animal: class Animal:
def __init__(self, x, y,name, image, food_image, food, environment, adult=False,): def __init__(self, x, y,name, image, food_image, food, environment, adult=False,):
@ -14,29 +14,31 @@ class Animal:
self.environment = environment #hot/cold/medium self.environment = environment #hot/cold/medium
def draw(self, screen, grid_size): def draw(self, screen, grid_size):
self.image = pygame.transform.scale(self.image, (grid_size, grid_size))
if self.adult: if self.adult:
# If adult, draw like AdultAnimal # Jeśli zwierzę jest dorosłe, skaluj obrazek na większy rozmiar
new_width = grid_size * 2 new_width = grid_size * 2
new_height = grid_size * 2 new_height = grid_size * 2
scaled_image = pygame.transform.scale(self.image, (new_width, new_height)) scaled_image = pygame.transform.scale(self.image, (new_width, new_height))
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size)) screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
else: else:
# If not adult, draw like normal Animal # Jeśli zwierzę nie jest dorosłe, skaluj obrazek na rozmiar jednej kratki
screen.blit(self.image, (self.x * grid_size, self.y * grid_size)) scaled_image = pygame.transform.scale(self.image, (grid_size, grid_size))
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
def draw_exclamation(self, screen, grid_size, x, y): def draw_exclamation(self, screen, grid_size, x, y):
exclamation_image = pygame.image.load('images/exclamation.png') exclamation_image = pygame.image.load('images/exclamation.png')
exclamation_image = pygame.transform.scale(exclamation_image, (grid_size,grid_size)) exclamation_image = pygame.transform.scale(exclamation_image, (int(grid_size * 0.45), int(grid_size * 0.45)))
screen.blit(exclamation_image, (x*grid_size, y*grid_size - grid_size)) screen.blit(exclamation_image, (x * grid_size, y * grid_size))
def draw_food(self, screen, grid_size, x, y): def draw_food(self, screen, grid_size, x, y):
scale = 0.45
food_image = pygame.image.load(self.food_image) food_image = pygame.image.load(self.food_image)
food_image = pygame.transform.scale(food_image, (grid_size,grid_size))
screen.blit(food_image, (x*grid_size, y*grid_size + grid_size))
if(self.adult):
y = y + 1
scale = 0.7
food_image = pygame.transform.scale(food_image, (int(grid_size * scale), int(grid_size * scale)))
screen.blit(food_image, (x * grid_size, (y + 1) * grid_size - int(grid_size * scale)))
@abstractmethod @abstractmethod
def feed(self): def feed(self):
@ -44,4 +46,4 @@ class Animal:
@abstractmethod @abstractmethod
def getting_hungry(self): def getting_hungry(self):
pass pass

47
Animals/animals.py Normal file
View File

@ -0,0 +1,47 @@
from elephant import Elephant
from giraffe import Giraffe
from penguin import Penguin
from parrot import Parrot
from bear import Bear
def create_animals():
giraffe1 = Giraffe(0, 0, adult=True)
giraffe2 = Giraffe(0, 0, adult=True)
giraffe3 = Giraffe(0, 0, adult=True)
giraffe4 = Giraffe(0, 0)
giraffe5 = Giraffe(0, 0)
bear1 = Bear(0, 0, adult=True)
bear2 = Bear(0, 0, adult=True)
bear3 = Bear(0, 0)
bear4 = Bear(0, 0)
bear5 = Bear(0, 0)
penguin1 = Penguin(0, 0)
penguin2 = Penguin(0, 0)
penguin3 = Penguin(0, 0)
penguin4 = Penguin(0, 0)
elephant1 = Elephant(0, 0, adult=True)
elephant2 = Elephant(0, 0, adult=True)
elephant3 = Elephant(0, 0)
elephant4 = Elephant(0, 0)
elephant5 = Elephant(0, 0)
parrot1 = Parrot(0, 0)
parrot2 = Parrot(0, 0)
parrot3 = Parrot(0, 0)
parrot4 = Parrot(0, 0)
parrot5 = Parrot(0, 0)
Animals = [giraffe1, giraffe2, giraffe3, giraffe4, giraffe5,
bear1, bear2, bear3, bear4, bear5,
elephant1, elephant2, elephant3, elephant4, elephant5,
penguin1, penguin2, penguin3, penguin4,
parrot1, parrot2, parrot3, parrot4, parrot5]
return Animals
def draw_Animals(Animals, const):
for Animal in Animals:
Animal.draw(const.screen, const.GRID_SIZE)
if Animal.feed() == 'True':
Animal.draw_exclamation(const.screen, const.GRID_SIZE, Animal.x, Animal.y)
else:
Animal.draw_food(const.screen,const.GRID_SIZE,Animal.x,Animal.y)

View File

@ -2,8 +2,6 @@ from animal import Animal
import pygame import pygame
from datetime import datetime from datetime import datetime
class Bear(Animal): class Bear(Animal):
def __init__(self, x, y, adult=False): def __init__(self, x, y, adult=False):
Bear_image = pygame.image.load('images/bear.png') Bear_image = pygame.image.load('images/bear.png')

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,34 +1,66 @@
import pygame import pygame
from state_space_search import is_border, is_obstacle
class Agent: class Agent:
def __init__(self, x, y, image_path, grid_size): def __init__(self, istate, image_path, grid_size):
self.x = x self.istate = istate
self.y = y self.x, self.y, self.direction = istate
self.grid_size = grid_size self.grid_size = grid_size
self.image = pygame.image.load(image_path) self.image= pygame.image.load(image_path)
self.image = pygame.transform.scale(self.image, (grid_size, grid_size)) self.image = pygame.transform.scale(self.image, (grid_size, grid_size))
def draw(self, screen, grid_size):
def draw(self, screen): # Obróć obrazek zgodnie z kierunkiem
if self.direction == 'E':
self.image= pygame.image.load('images/agent4.png')
elif self.direction == 'S':
self.image= pygame.image.load('images/agent1.png')
elif self.direction == 'W':
self.image= pygame.image.load('images/agent3.png')
else: # direction == 'N'
self.image= pygame.image.load('images/agent2.png')
self.image = pygame.transform.scale(self.image, (grid_size, grid_size))
screen.blit(self.image, (self.x * self.grid_size, self.y * self.grid_size)) screen.blit(self.image, (self.x * self.grid_size, self.y * self.grid_size))
def move(self, dx, dy): def handle_event(self, event, max_x, max_y, animals, obstacles):
self.x += dx
self.y += dy
def handle_event(self, event, grid_height,grid_width, animals, blocked_fields):
if event.type == pygame.KEYDOWN: if event.type == pygame.KEYDOWN:
if event.key == pygame.K_UP and self.y > 0 and (self.x, self.y-1) not in blocked_fields: if event.key == pygame.K_UP:
self.move(0, -1) self.move('Go Forward', max_x, max_y, obstacles, animals)
elif event.key == pygame.K_DOWN and self.y < grid_height - 1 and (self.x, self.y+1) not in blocked_fields: elif event.key == pygame.K_LEFT:
self.move(0, 1) self.move('Turn Left', max_x, max_y, obstacles, animals)
elif event.key == pygame.K_LEFT and self.x > 0 and (self.x-1, self.y) not in blocked_fields: elif event.key == pygame.K_RIGHT:
self.move(-1, 0) self.move('Turn Right', max_x, max_y, obstacles, animals)
elif event.key == pygame.K_RIGHT and self.x < grid_width - 1 and (self.x+1, self.y) not in blocked_fields:
self.move(1, 0)
def move(self, action, max_x, max_y, obstacles, animals, goal):
if action == 'Go Forward':
new_x, new_y = self.x, self.y
if self.direction == 'N':
new_y -= 1
elif self.direction == 'E':
new_x += 1
elif self.direction == 'S':
new_y += 1
elif self.direction == 'W':
new_x -= 1
# Sprawdź, czy nowe położenie mieści się w granicach kraty i nie jest przeszkodą
if is_border(new_x, new_y, max_x, max_y) and not(is_obstacle(new_x, new_y, obstacles)):
self.x, self.y = new_x, new_y
elif action == 'Turn Left':
self.direction = {'N': 'W', 'W': 'S', 'S': 'E', 'E': 'N'}[self.direction]
elif action == 'Turn Right':
self.direction = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'}[self.direction]
self.istate = (self.x, self.y, self.direction)
feed_animal(self, animals, goal)
def feed_animal(self, animals, goal):
goal_x, goal_y = goal
if self.x == goal_x and self.y == goal_y:
for animal in animals: for animal in animals:
if self.x == animal.x and self.y == animal.y: if animal.x == goal_x and animal.y == goal_y:
if animal.feed()== 'True': if animal.feed() == 'True':
animal._feed = 0 animal._feed = 0
print(animal.name,"fed with",animal.food) print(animal.name, "fed with", animal.food)

15
constants.py Normal file
View File

@ -0,0 +1,15 @@
import pygame
class Constants:
def __init__(self):
self.BLACK = (0, 0, 0)
self.RED = (255, 0, 0)
self.GRID_SIZE = 50
self.GRID_WIDTH = 30
self.GRID_HEIGHT = 15
self.WINDOW_SIZE = (self.GRID_WIDTH * self.GRID_SIZE, self.GRID_HEIGHT * self.GRID_SIZE)
self.background_image = pygame.transform.scale(pygame.image.load('images/tło.jpg'), self.WINDOW_SIZE)
def init_pygame(const):
pygame.init()
const.screen = pygame.display.set_mode(const.WINDOW_SIZE)

14
draw.py Normal file
View File

@ -0,0 +1,14 @@
import pygame
def draw_goal(const, goal):
x, y = goal
rect = (x * const.GRID_SIZE, y * const.GRID_SIZE, const.GRID_SIZE, const.GRID_SIZE)
pygame.draw.rect(const.screen, const.RED, rect)
pygame.display.flip()
pygame.time.delay(2000)
def draw_grid(const):
for y in range(0, const.GRID_HEIGHT * const.GRID_SIZE, const.GRID_SIZE):
for x in range(0, const.GRID_WIDTH * const.GRID_SIZE, const.GRID_SIZE):
rect = pygame.Rect(x, y, const.GRID_SIZE, const.GRID_SIZE)
pygame.draw.rect(const.screen, const.BLACK, rect, 1)

View File

@ -1,14 +1,16 @@
import pygame import pygame
class Enclosure: class Enclosure:
def __init__(self, x1, y1, x2, y2, gate, type, imageH, imageV, imageGate): def __init__(self, x1, y1, x2, y2, gate1, gate2, type, imageH, imageV, imageGate):
self.x1 = x1 - 1 self.x1 = x1 - 1
self.y1 = y1 - 1 self.y1 = y1 - 1
#(x1,y1) - wierzchołek przekątnej # (x1,y1) - wierzchołek przekątnej
self.x2 = x2 - 1 self.x2 = x2 - 1
self.y2 = y2 - 1 self.y2 = y2 - 1
#(x2,y2) - 2 wierzchołek przekątnej # (x2,y2) - 2 wierzchołek przekątnej
self.gate = gate self.gate1 = gate1
self.gate2 = gate2
self.type = type self.type = type
self.imageH = imageH self.imageH = imageH
self.imageV = imageV self.imageV = imageV
@ -16,64 +18,57 @@ class Enclosure:
def gatebuild(self, screen, grid_size): def gatebuild(self, screen, grid_size):
self.imageGate = pygame.transform.scale(self.imageGate, (grid_size, grid_size)) self.imageGate = pygame.transform.scale(self.imageGate, (grid_size, grid_size))
gate_x, gate_y = self.gate gate_x1, gate_y1 = self.gate1
gate_x-=1 gate_x2, gate_y2 = self.gate2
gate_y-=1 gate_x1 -= 1
rect = pygame.Rect(gate_x * grid_size, gate_y * grid_size, grid_size, grid_size) gate_y1 -= 1
pygame.draw.rect(screen, (0, 0, 0), rect) # Fill the area with gate_x2 -= 1
screen.blit(self.imageGate, (gate_x * grid_size, gate_y * grid_size)) gate_y2 -= 1
rect1 = pygame.Rect(gate_x1 * grid_size, gate_y1 * grid_size, grid_size, grid_size)
rect2 = pygame.Rect(gate_x2 * grid_size, gate_y2 * grid_size, grid_size, grid_size)
screen.blit(self.imageGate, (gate_x1 * grid_size, gate_y1 * grid_size))
screen.blit(self.imageGate, (gate_x2 * grid_size, gate_y2 * grid_size))
def gateopen(self, blocked): def draw(self, screen, grid_size):
gate_x, gate_y = self.gate
gate_x -= 1
gate_y -= 1
if (gate_x, gate_y) in blocked:
blocked.remove((gate_x, gate_y))
def draw(self,screen, grid_size , blocked_fields):
self.imageH = pygame.transform.scale(self.imageH, (grid_size, grid_size)) self.imageH = pygame.transform.scale(self.imageH, (grid_size, grid_size))
self.imageV = pygame.transform.scale(self.imageV, (grid_size, grid_size)) self.imageV = pygame.transform.scale(self.imageV, (grid_size, grid_size))
gate_x1, gate_y1 = self.gate1
gate_x2, gate_y2 = self.gate2
gate_x1 -= 1
gate_y1 -= 1
gate_x2 -= 1
gate_y2 -= 1
if self.x1 < self.x2: if self.x1 < self.x2:
for i in range(self.x1, self.x2+1): for i in range(self.x1, self.x2 + 1):
screen.blit(self.imageH, (i * grid_size, self.y1 * grid_size)) if (i, self.y1) != (gate_x1, gate_y1) and (i, self.y1) != (gate_x2, gate_y2):
blocked_fields.add((i, self.y1)) screen.blit(self.imageH, (i * grid_size, self.y1 * grid_size))
screen.blit(self.imageH, (i * grid_size, self.y2 * grid_size)) if (i, self.y2) != (gate_x1, gate_y1) and (i, self.y2) != (gate_x2, gate_y2):
blocked_fields.add((i, self.y2)) screen.blit(self.imageH, (i * grid_size, self.y2 * grid_size))
if self.y1 < self.y2: for j in range(self.y1, self.y2 + 1):
for j in range(self.y1, self.y2+1): if (self.x1, j) != (gate_x1, gate_y1) and (self.x1, j) != (gate_x2, gate_y2):
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size)) screen.blit(self.imageV, (self.x1 * grid_size, j * grid_size))
blocked_fields.add((self.x1, j)) if (self.x2, j) != (gate_x1, gate_y1) and (self.x2, j) != (gate_x2, gate_y2):
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size)) screen.blit(self.imageV, (self.x2 * grid_size, j * grid_size))
blocked_fields.add((self.x2, j))
if self.y1 > self.y2:
for j in range(self.y2, self.y1+1):
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
blocked_fields.add((self.x1, j))
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
blocked_fields.add((self.x2, j))
if self.x1 > self.x2:
for i in range(self.x2, self.x1+1):
screen.blit(self.imageH, (i * grid_size, self.y1 * grid_size))
blocked_fields.add((i, self.y1))
screen.blit(self.imageH, (i * grid_size, self.y2 * grid_size))
blocked_fields.add((i, self.y2))
if self.y1 < self.y2:
for j in range(self.y1, self.y2+1):
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
blocked_fields.add((self.x1, j))
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
blocked_fields.add((self.x2, j))
if self.y1 > self.y2:
for j in range(self.y2, self.y1+1):
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
blocked_fields.add((self.x1, j))
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
blocked_fields.add((self.x2, j))
def create_enclosures():
fenceH = pygame.image.load('images/fenceHor.png')
fenceV = pygame.image.load('images/fenceVer.png')
gate = pygame.image.load('images/gate.png')
en1 = Enclosure(0, 5, 9, 11, (9, 6), (4, 11), "hot", fenceH, fenceV, gate) # Lewa klatka
en2 = Enclosure(13, 0, 29, 3, (16, 3), (27, 3), 'medium', fenceH, fenceV, gate) # Górna klatka
en3 = Enclosure(11, 5, 16, 11, (12, 5), (16, 8), 'cold', fenceH, fenceV, gate) # Środkowa klatka
en4 = Enclosure(19, 5, 31, 11, (23, 5), (25, 11), 'hot', fenceH, fenceV, gate) # Prawa klatka
en5 = Enclosure(4, 13, 28, 16, (12, 13), (20, 13), 'cold', fenceH, fenceV, gate) # Dolna klatka
Enclosures = [en1, en2, en3, en4, en5]
return Enclosures
def draw_enclosures(Enclosures, const):
for enclosure in Enclosures:
enclosure.draw(const.screen, const.GRID_SIZE)
def draw_gates(Enclosures, const):
for enclosure in Enclosures:
enclosure.gatebuild(const.screen, const.GRID_SIZE)

BIN
images/agent1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

BIN
images/agent2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

BIN
images/agent3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

BIN
images/agent4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 248 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 MiB

After

Width:  |  Height:  |  Size: 2.3 MiB

BIN
images/bush.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 222 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 934 KiB

After

Width:  |  Height:  |  Size: 601 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

After

Width:  |  Height:  |  Size: 444 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 186 KiB

After

Width:  |  Height:  |  Size: 232 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 288 KiB

After

Width:  |  Height:  |  Size: 460 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 MiB

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 2.4 MiB

BIN
images/puddle.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 KiB

169
main.py
View File

@ -1,117 +1,116 @@
import random
import pygame import pygame
import sys import sys
from elephant import Elephant import sys
from giraffe import Giraffe sys.path.append('./Animals')
from penguin import Penguin from animals import create_animals, draw_Animals
from parrot import Parrot
from bear import Bear
from agent import Agent from agent import Agent
from enclosure import Enclosure from enclosure import create_enclosures, draw_enclosures, draw_gates
from spawner import Spawner from spawner import Spawner
from state_space_search import graphsearch, generate_cost_map
from terrain_obstacle import create_obstacles, draw_Terrain_Obstacles
from constants import Constants, init_pygame
from draw import draw_goal, draw_grid
BLACK = (0, 0, 0) const = Constants()
init_pygame(const)
GRID_SIZE = 50
GRID_WIDTH = 30
GRID_HEIGHT = 15
pygame.init()
WINDOW_SIZE = (GRID_WIDTH * GRID_SIZE, GRID_HEIGHT * GRID_SIZE)
screen = pygame.display.set_mode(WINDOW_SIZE)
pygame.display.set_caption("Mini Zoo") pygame.display.set_caption("Mini Zoo")
obstacles = set()
background_image = pygame.image.load('images/tło.jpg')
background_image = pygame.transform.scale(background_image, WINDOW_SIZE)
fenceH = pygame.image.load('images/fenceHor.png')
fenceV = pygame.image.load('images/fenceVer.png')
gate = pygame.image.load('images/gate.png')
fences = set()
animals_position = set() animals_position = set()
terrain_obstacles_position = set()
Animals = create_animals()
Enclosures = create_enclosures()
an1 = Parrot(16, 2) Terrain_Obstacles = create_obstacles()
an2 = Penguin(8, 6)
an3 = Bear(14, 9)
old_an2 = Giraffe(18,4, adult=True)
old_an1 = Elephant(4, 7, adult=True)
an4 = Elephant(4,3)
Animals = [an1, an2, an3, an4, old_an1, old_an2]
en1 = Enclosure(1,5,9,11,(9,6),"medium", fenceH, fenceV, gate)
en2 = Enclosure(29,3, 13,1,(16,3), 'medium', fenceH, fenceV, gate)
en3 = Enclosure(11,5, 16,11, (12,5),'cold', fenceH, fenceV, gate)
en4 = Enclosure(19,11, 30,5, (25,5),'hot', fenceH, fenceV, gate)
en5 = Enclosure(4,13, 28,15, (16,13),'cold', fenceH, fenceV, gate)
Enclosures = [en1, en2, en3, en4, en5]
def draw_grid():
for y in range(0, GRID_HEIGHT * GRID_SIZE, GRID_SIZE):
for x in range(0, GRID_WIDTH * GRID_SIZE, GRID_SIZE):
rect = pygame.Rect(x, y, GRID_SIZE, GRID_SIZE)
pygame.draw.rect(screen, BLACK, rect, 1)
def draw_enclosures():
for enclosure in Enclosures:
enclosure.draw(screen, GRID_SIZE, fences)
def draw_gates():
for enclosure in Enclosures:
enclosure.gatebuild(screen, GRID_SIZE)
def opengates():
for enclosure in Enclosures:
enclosure.gateopen(fences)
def draw_Animals():
for Animal in Animals:
Animal.draw(screen, GRID_SIZE)
if Animal.feed() == 'True':
Animal.draw_exclamation(screen, GRID_SIZE, Animal.x, Animal.y)
else:
Animal.draw_food(screen,GRID_SIZE,Animal.x,Animal.y)
def spawn_all_animals(): def spawn_all_animals():
for Animal in Animals: for Animal in Animals:
spawner1 = Spawner(Animal, Enclosures) spawner1 = Spawner(Animal)
spawner1.spawn_animal(fences, animals_position) spawner1.spawn_animal(obstacles, animals_position, Enclosures)
def spawn_obstacles():
for terrain_obstacle in Terrain_Obstacles:
spawner2 = Spawner(terrain_obstacle)
spawner2.spawn_terrain_obstacles(obstacles, animals_position, terrain_obstacles_position, const.GRID_WIDTH, const.GRID_HEIGHT)
def generate_obstacles():
for en in Enclosures:
# Pobierz współrzędne bramy
gate_x, gate_y = en.gate1
gate_x -= 1
gate_y -= 1
gate_x2, gate_y2 = en.gate2
gate_x2 -= 1
gate_y2 -= 1
# Dodaj lewy brzeg prostokąta
for y in range(en.y1, en.y2 + 1):
if (en.x1, y) != (gate_x, gate_y) and (en.x1, y) != (gate_x2, gate_y2):
obstacles.add((en.x1, y))
# Dodaj prawy brzeg prostokąta
for y in range(en.y1, en.y2 + 1):
if (en.x2, y) != (gate_x, gate_y) and (en.x2, y) != (gate_x2, gate_y2):
obstacles.add((en.x2, y))
# Dodaj górny brzeg prostokąta
for x in range(en.x1+1, en.x2):
if (x, en.y1) != (gate_x, gate_y) and (x, en.y1) != (gate_x2, gate_y2):
obstacles.add((x, en.y1))
# Dodaj dolny brzeg prostokąta
for x in range(en.x1+1, en.x2):
if (x, en.y2) != (gate_x, gate_y) and (x, en.y2) != (gate_x2, gate_y2):
obstacles.add((x, en.y2))
return obstacles
def main(): def main():
agent = Agent(0, 0, 'images/avatar.png', GRID_SIZE) initial_state = (0, 0, 'S')
agent = Agent(initial_state, 'images/agent1.png', const.GRID_SIZE)
obstacles = generate_obstacles()
actions = []
clock = pygame.time.Clock() clock = pygame.time.Clock()
spawned = False spawned = False
while True: while True:
for event in pygame.event.get(): for event in pygame.event.get():
if event.type == pygame.QUIT: if event.type == pygame.QUIT:
pygame.quit() pygame.quit()
sys.exit() sys.exit()
agent.handle_event(event, GRID_HEIGHT, GRID_WIDTH, Animals, fences) agent.handle_event(event, const.GRID_WIDTH, const.GRID_HEIGHT, Animals, obstacles)
const.screen.blit(const.background_image, (0, 0))
draw_grid(const)
draw_enclosures(Enclosures, const)
draw_gates(Enclosures, const)
screen.blit(background_image,(0,0))
draw_grid()
draw_enclosures()
draw_gates()
if not spawned: if not spawned:
spawn_all_animals() spawn_all_animals()
spawn_obstacles()
cost_map = generate_cost_map(Animals, Terrain_Obstacles)
for animal in Animals:
animal._feed = 2 # Ustawienie, aby zwierzę było głodne
spawned = True spawned = True
draw_Animals()
opengates() draw_Animals(Animals, const)
agent.draw(screen) draw_Terrain_Obstacles(Terrain_Obstacles, const)
agent.draw(const.screen, const.GRID_SIZE)
pygame.display.flip() pygame.display.flip()
clock.tick(10) clock.tick(10)
if actions:
action = actions.pop(0)
agent.move(action, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, Animals, goal)
pygame.time.wait(200)
else:
animal = random.choice(Animals)
goal = (animal.x, animal.y)
draw_goal(const, goal)
actions = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -1,44 +1,53 @@
import random import random
class Spawner: class Spawner:
def __init__(self, animal, enclosures): def __init__(self, entity):
self.animal = animal self.entity = entity
self.enclosures = enclosures
def spawn_animal(self, blocked, taken, enclosures):
self.enclosures = [enclosure for enclosure in enclosures if enclosure.type == self.entity.environment]
# Wyrażenie listowe filtrujące tylko te wybiegi, które pasują do środowiska zwierzęcia
enclosure = random.choice(self.enclosures)
def spawn_animal(self, blocked, taken):
possibilities = self.enclosures
fitting = []
for option in possibilities:
if option.type == self.animal.environment:
fitting.append(option)
enclosure = random.choice(fitting)
while True: while True:
if enclosure.x1 < enclosure.x2: if self.entity.adult:
self.animal.x = random.randint(enclosure.x1, enclosure.x2) self.entity.x = random.randint(enclosure.x1+1, enclosure.x2-2)
if enclosure.y1 < enclosure.y2: self.entity.y = random.randint(enclosure.y1+1, enclosure.y2-2)
self.animal.y = random.randint(enclosure.y1, enclosure.y2) else:
if enclosure.y1 > enclosure.y2: self.entity.x = random.randint(enclosure.x1+1, enclosure.x2)
self.animal.y = random.randint(enclosure.y2, enclosure.y1) self.entity.y = random.randint(enclosure.y1+1, enclosure.y2)
if enclosure.x1 > enclosure.x2:
self.animal.x = random.randint(enclosure.x2, enclosure.x1) if self.check(blocked | {(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}, taken):
if enclosure.y1 < enclosure.y2: break
self.animal.y = random.randint(enclosure.y1, enclosure.y2)
if enclosure.y1 > enclosure.y2: def spawn_terrain_obstacles(self, blocked1, blocked2, taken, grid_width, grid_height):
self.animal.y = random.randint(enclosure.y2, enclosure.y1) blocked1 = blocked1 | {(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}
if self.check(blocked, taken): while True:
self.entity.x = random.randint(0, grid_width - 1)
self.entity.y = random.randint(0, grid_height - 1)
y = self.entity.y
x = self.entity.x
if (x, y) not in blocked1 and (x, y) not in blocked2 and (x, y) not in taken:
taken.add((self.entity.x, self.entity.y))
break break
def check(self, blocked, taken): def check(self, blocked, taken):
x = self.animal.x x = self.entity.x
y = self.animal.y y = self.entity.y
if (x,y) in blocked or (x,y) in taken: if (x,y) in blocked or (x,y) in taken:
return False return False
taken.add((x,y))
return True
if self.entity.adult:
adult_fields = [(x, y), (x+1,y), (x,y+1), (x+1,y+1)] # Duże zwierze zajmuje 4 pola
if any(field in taken for field in adult_fields): # Jeśli stawiane zwierze jest dorosłe i jakiekolwiek pole jest zajęte, to nie można postawić zwierzęcia
return False
for field in adult_fields: # Dodaj wszystkie pola zajęte przez duże zwierzę
taken.add(field)
else:
taken.add((x,y))
return True

127
state_space_search.py Normal file
View File

@ -0,0 +1,127 @@
from queue import PriorityQueue
DEFAULT_COST_VALUE = 1
def is_border(x, y, max_x, max_y):
return 0 <= x < max_x and 0 <= y < max_y
def is_obstacle(x, y, obstacles):
return (x, y) in obstacles
def succ(current_state, max_x, max_y, obstacles):
successors = []
x, y, direction = current_state
# Akcja: Do przodu
direction_x, direction_y = {'N': (0, -1), 'E': (1, 0), 'S': (0, 1), 'W': (-1, 0)}[direction] # Słownik przesunięć w zależności od kierunku
new_x, new_y = x + direction_x, y + direction_y
if is_border(new_x, new_y, max_x, max_y) and not(is_obstacle(new_x, new_y, obstacles)):
successors.append(((new_x, new_y, direction), 'Go Forward'))
# Akcja: Obrót w lewo
left_turns = {'N': 'W', 'W': 'S', 'S': 'E', 'E': 'N'} # Słownik kierunków po obrocie w lewo
successors.append(((x, y, left_turns[direction]), 'Turn Left'))
# Akcja: Obrót w prawo
right_turns = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'} # Słownik kierunków po obrocie w prawo
successors.append(((x, y, right_turns[direction]), 'Turn Right'))
return successors
def graphsearch(istate, goal, max_x, max_y, obstacles, cost_map):
fringe = PriorityQueue()
explored = set()
fringe.put((0, (istate, None , None)))
while not fringe.empty():
_, node = fringe.get()
state, _, _ = node
if goaltest(state, goal):
return build_action_sequence(node)
explored.add(state)
successors = succ(state, max_x, max_y, obstacles)
for new_state, action in successors:
new_node = (new_state, node, action)
p_new_state = current_cost(node, cost_map) + heuristic(state, goal)
if not is_state_in_queue(new_state, fringe) and new_state not in explored:
fringe.put((p_new_state, new_node))
elif is_state_in_queue(new_state, fringe):
for i, (p_existing_state, (existing_state, _, _)) in enumerate(fringe.queue):
if existing_state == new_state and p_existing_state > p_new_state:
fringe.queue[i] = (p_new_state, new_node)
else:
break
return False
def is_state_in_queue(state, queue):
for _, (s, _, _) in queue.queue:
if s == state:
return True
return False
def build_action_sequence(node):
actions = []
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
_, parent, action = node
actions.append(action)
node = parent
actions.reverse()
return actions
def goaltest(state, goal):
x, y, _ = state
goal_x, goal_y = goal
return (x,y) == (goal_x, goal_y)
def current_cost(node, cost_map):
cost = 0
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
_, parent, action = node
# Dodaj koszt pola z mapy kosztów tylko jeśli akcja to "Forward"
if action == 'Go Forward':
state, _, _ = node
cost += cost_map.get(state[:2], DEFAULT_COST_VALUE) # Pobiera koszt przejścia przez dane pole, a jeśli koszt nie jest zdefiniowany to bierze wartość domyślną
if action == 'Turn Right' or action == 'Turn Left':
cost += DEFAULT_COST_VALUE
node = parent # Przejdź do rodzica
return cost
def heuristic(state, goal):
x, y, _ = state
goal_x, goal_y = goal
return abs(x - goal_x) + abs(y - goal_y) # Odległość Manhattana do celu
def generate_cost_map(Animals, Terrain_Obstacles, cost_map={}):
adult_animal_cost = 15 # Default : 15
baby_animal_cost = 10 # Default : 10
puddle_cost = 50 # Default : 50
bush_cost = 20 # Default : 20
for animal in Animals:
if animal.adult:
cost_map[(animal.x + 1, animal.y + 1)] = adult_animal_cost
cost_map[(animal.x + 1, animal.y)] = adult_animal_cost
cost_map[(animal.x, animal.y + 1)] = adult_animal_cost
cost_map[(animal.x, animal.y)] = adult_animal_cost
else:
cost_map[(animal.x, animal.y)] = baby_animal_cost
for terrain_obstacle in Terrain_Obstacles:
if terrain_obstacle.type == 'puddle':
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = puddle_cost
else:
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = bush_cost
return cost_map

37
terrain_obstacle.py Normal file
View File

@ -0,0 +1,37 @@
import pygame
class Terrain_Obstacle:
def __init__(self, x, y, type , image):
self.x = x - 1
self.y = y - 1
self.type = type
self.image = image
def draw(self, screen, grid_size):
scaled_image = pygame.transform.scale(self.image, (grid_size, grid_size))
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
def create_obstacles():
puddle_image = pygame.image.load('images/puddle.png')
bush_image = pygame.image.load('images/bush.png')
puddle1 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle2 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle3 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle4 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle5 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle6 = Terrain_Obstacle(0,0,'puddle', puddle_image)
puddle7 = Terrain_Obstacle(0,0,'puddle', puddle_image)
bush1 = Terrain_Obstacle(0,0,'bush', bush_image)
bush2 = Terrain_Obstacle(0,0,'bush', bush_image)
bush3 = Terrain_Obstacle(0,0,'bush', bush_image)
bush4 = Terrain_Obstacle(0,0,'bush', bush_image)
bush5 = Terrain_Obstacle(0,0,'bush', bush_image)
Terrain_Obstacles = [puddle1, puddle2, puddle3, puddle4, puddle5, puddle6, puddle7, bush1, bush2, bush3, bush4, bush5]
return Terrain_Obstacles
def draw_Terrain_Obstacles(Terrain_Obstacles, const):
for terrain_obstacle in Terrain_Obstacles:
terrain_obstacle.draw(const.screen, const.GRID_SIZE)