Uprzątnięcie i przeorganizowanie kodu na oddzielne pliki
This commit is contained in:
parent
088956ccb8
commit
b18e1e9eeb
5
.vscode/settings.json
vendored
Normal file
5
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
{
|
||||
"python.analysis.extraPaths": [
|
||||
"./Animals"
|
||||
]
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
import pygame
|
||||
from abc import ABC, abstractmethod
|
||||
from abc import abstractmethod
|
||||
|
||||
class Animal:
|
||||
def __init__(self, x, y,name, image, food_image, food, environment, adult=False,):
|
@ -37,3 +37,11 @@ def create_animals():
|
||||
parrot1, parrot2, parrot3, parrot4, parrot5]
|
||||
|
||||
return Animals
|
||||
|
||||
def draw_Animals(Animals, const):
|
||||
for Animal in Animals:
|
||||
Animal.draw(const.screen, const.GRID_SIZE)
|
||||
if Animal.feed() == 'True':
|
||||
Animal.draw_exclamation(const.screen, const.GRID_SIZE, Animal.x, Animal.y)
|
||||
else:
|
||||
Animal.draw_food(const.screen,const.GRID_SIZE,Animal.x,Animal.y)
|
@ -2,8 +2,6 @@ from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Bear(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Bear_image = pygame.image.load('images/bear.png')
|
2
agent.py
2
agent.py
@ -31,8 +31,6 @@ class Agent:
|
||||
elif event.key == pygame.K_RIGHT:
|
||||
self.move('Turn Right', max_x, max_y, obstacles, animals)
|
||||
|
||||
# feed_animal(self, animals)
|
||||
|
||||
def move(self, action, max_x, max_y, obstacles, animals, goal):
|
||||
if action == 'Go Forward':
|
||||
new_x, new_y = self.x, self.y
|
||||
|
15
constants.py
Normal file
15
constants.py
Normal file
@ -0,0 +1,15 @@
|
||||
import pygame
|
||||
|
||||
class Constants:
|
||||
def __init__(self):
|
||||
self.BLACK = (0, 0, 0)
|
||||
self.RED = (255, 0, 0)
|
||||
self.GRID_SIZE = 50
|
||||
self.GRID_WIDTH = 30
|
||||
self.GRID_HEIGHT = 15
|
||||
self.WINDOW_SIZE = (self.GRID_WIDTH * self.GRID_SIZE, self.GRID_HEIGHT * self.GRID_SIZE)
|
||||
self.background_image = pygame.transform.scale(pygame.image.load('images/tło.jpg'), self.WINDOW_SIZE)
|
||||
|
||||
def init_pygame(const):
|
||||
pygame.init()
|
||||
const.screen = pygame.display.set_mode(const.WINDOW_SIZE)
|
14
draw.py
Normal file
14
draw.py
Normal file
@ -0,0 +1,14 @@
|
||||
import pygame
|
||||
|
||||
def draw_goal(const, goal):
|
||||
x, y = goal
|
||||
rect = (x * const.GRID_SIZE, y * const.GRID_SIZE, const.GRID_SIZE, const.GRID_SIZE)
|
||||
pygame.draw.rect(const.screen, const.RED, rect)
|
||||
pygame.display.flip()
|
||||
pygame.time.delay(2000)
|
||||
|
||||
def draw_grid(const):
|
||||
for y in range(0, const.GRID_HEIGHT * const.GRID_SIZE, const.GRID_SIZE):
|
||||
for x in range(0, const.GRID_WIDTH * const.GRID_SIZE, const.GRID_SIZE):
|
||||
rect = pygame.Rect(x, y, const.GRID_SIZE, const.GRID_SIZE)
|
||||
pygame.draw.rect(const.screen, const.BLACK, rect, 1)
|
@ -50,7 +50,6 @@ class Enclosure:
|
||||
if (self.x2, j) != (gate_x1, gate_y1) and (self.x2, j) != (gate_x2, gate_y2):
|
||||
screen.blit(self.imageV, (self.x2 * grid_size, j * grid_size))
|
||||
|
||||
|
||||
def create_enclosures():
|
||||
fenceH = pygame.image.load('images/fenceHor.png')
|
||||
fenceV = pygame.image.load('images/fenceVer.png')
|
||||
@ -65,3 +64,11 @@ def create_enclosures():
|
||||
Enclosures = [en1, en2, en3, en4, en5]
|
||||
|
||||
return Enclosures
|
||||
|
||||
def draw_enclosures(Enclosures, const):
|
||||
for enclosure in Enclosures:
|
||||
enclosure.draw(const.screen, const.GRID_SIZE)
|
||||
|
||||
def draw_gates(Enclosures, const):
|
||||
for enclosure in Enclosures:
|
||||
enclosure.gatebuild(const.screen, const.GRID_SIZE)
|
265
main.py
265
main.py
@ -1,97 +1,40 @@
|
||||
from enum import Enum
|
||||
import random
|
||||
import pygame
|
||||
import sys
|
||||
from animals import create_animals
|
||||
import sys
|
||||
sys.path.append('./Animals')
|
||||
from animals import create_animals, draw_Animals
|
||||
from agent import Agent
|
||||
from enclosure import Enclosure, create_enclosures
|
||||
from enclosure import create_enclosures, draw_enclosures, draw_gates
|
||||
from spawner import Spawner
|
||||
from state_space_search import graphsearch
|
||||
from terrain_obstacle import Terrain_Obstacle
|
||||
from state_space_search import graphsearch, generate_cost_map
|
||||
from terrain_obstacle import create_obstacles, draw_Terrain_Obstacles
|
||||
from constants import Constants, init_pygame
|
||||
from draw import draw_goal, draw_grid
|
||||
|
||||
BLACK = (0, 0, 0)
|
||||
RED = (255, 0, 0)
|
||||
|
||||
GRID_SIZE = 50
|
||||
GRID_WIDTH = 30
|
||||
GRID_HEIGHT = 15
|
||||
|
||||
pygame.init()
|
||||
|
||||
WINDOW_SIZE = (GRID_WIDTH * GRID_SIZE, GRID_HEIGHT * GRID_SIZE)
|
||||
screen = pygame.display.set_mode(WINDOW_SIZE)
|
||||
const = Constants()
|
||||
init_pygame(const)
|
||||
pygame.display.set_caption("Mini Zoo")
|
||||
|
||||
|
||||
|
||||
background_image = pygame.image.load('images/tło.jpg')
|
||||
background_image = pygame.transform.scale(background_image, WINDOW_SIZE)
|
||||
fenceH = pygame.image.load('images/fenceHor.png')
|
||||
fenceV = pygame.image.load('images/fenceVer.png')
|
||||
gate = pygame.image.load('images/gate.png')
|
||||
puddle_image = pygame.image.load('images/puddle.png')
|
||||
bush_image = pygame.image.load('images/bush.png')
|
||||
obstacles = set()
|
||||
animals_position = set()
|
||||
terrain_obstacles_position = set()
|
||||
|
||||
Animals = create_animals()
|
||||
Enclosures = create_enclosures()
|
||||
|
||||
puddle1 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle2 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle3 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle4 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle5 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle6 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle7 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
bush1 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush2 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush3 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush4 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush5 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
Terrain_Obstacles = [puddle1, puddle2, puddle3, puddle4, puddle5, puddle6, puddle7, bush1, bush2, bush3, bush4, bush5]
|
||||
|
||||
def draw_grid():
|
||||
for y in range(0, GRID_HEIGHT * GRID_SIZE, GRID_SIZE):
|
||||
for x in range(0, GRID_WIDTH * GRID_SIZE, GRID_SIZE):
|
||||
rect = pygame.Rect(x, y, GRID_SIZE, GRID_SIZE)
|
||||
pygame.draw.rect(screen, BLACK, rect, 1)
|
||||
|
||||
def draw_enclosures():
|
||||
for enclosure in Enclosures:
|
||||
enclosure.draw(screen, GRID_SIZE)
|
||||
|
||||
def draw_gates():
|
||||
for enclosure in Enclosures:
|
||||
enclosure.gatebuild(screen, GRID_SIZE)
|
||||
|
||||
def draw_Animals():
|
||||
for Animal in Animals:
|
||||
Animal.draw(screen, GRID_SIZE)
|
||||
if Animal.feed() == 'True':
|
||||
Animal.draw_exclamation(screen, GRID_SIZE, Animal.x, Animal.y)
|
||||
else:
|
||||
Animal.draw_food(screen,GRID_SIZE,Animal.x,Animal.y)
|
||||
Terrain_Obstacles = create_obstacles()
|
||||
|
||||
def spawn_all_animals():
|
||||
for Animal in Animals:
|
||||
spawner1 = Spawner(Animal)
|
||||
spawner1.spawn_animal(obstacles, animals_position, Enclosures)
|
||||
|
||||
def draw_Terrain_Obstacles():
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
terrain_obstacle.draw(screen, GRID_SIZE)
|
||||
|
||||
def spawn_obstacles():
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
spawner2= Spawner(terrain_obstacle)
|
||||
spawner2.spawn_terrain_obstacles(obstacles,animals_position, terrain_obstacles_position, GRID_WIDTH, GRID_HEIGHT)
|
||||
spawner2 = Spawner(terrain_obstacle)
|
||||
spawner2.spawn_terrain_obstacles(obstacles, animals_position, terrain_obstacles_position, const.GRID_WIDTH, const.GRID_HEIGHT)
|
||||
|
||||
|
||||
obstacles = set()
|
||||
def generate_obstacles():
|
||||
|
||||
for en in Enclosures:
|
||||
# Pobierz współrzędne bramy
|
||||
gate_x, gate_y = en.gate1
|
||||
@ -124,196 +67,50 @@ def generate_obstacles():
|
||||
|
||||
return obstacles
|
||||
|
||||
cost_map = {}
|
||||
def generate_cost_map():
|
||||
adult_animal_cost = 10
|
||||
baby_animal_cost = 5
|
||||
puddle_cost = 50
|
||||
bush_cost = 20
|
||||
wall_cost = 1000
|
||||
for animal in Animals:
|
||||
if animal.adult:
|
||||
cost_map[(animal.x + 1, animal.y + 1)] = baby_animal_cost
|
||||
cost_map[(animal.x + 1, animal.y)] = baby_animal_cost
|
||||
cost_map[(animal.x, animal.y + 1)] = baby_animal_cost
|
||||
cost_map[(animal.x, animal.y)] = adult_animal_cost
|
||||
else:
|
||||
cost_map[(animal.x, animal.y)] = baby_animal_cost
|
||||
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
if terrain_obstacle.type == 'puddle':
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = puddle_cost
|
||||
else:
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = bush_cost
|
||||
|
||||
for wall in Walls:
|
||||
cost_map[wall[0], wall[1]] = wall_cost
|
||||
# Inne pola z różnym kosztem
|
||||
# cost_map[(x, y)] = cost_value
|
||||
|
||||
# region Fields Tests
|
||||
available_fields_small = set()
|
||||
available_fields_large = set()
|
||||
|
||||
WHITE = (255,255,255)
|
||||
GREEN = (0, 255, 0)
|
||||
YELLOW = (255, 255, 0)
|
||||
BLACK = (0, 0, 0)
|
||||
|
||||
def generate_available_fields():
|
||||
for enclosure in Enclosures:
|
||||
for x in range(enclosure.x1 + 1, enclosure.x2):
|
||||
for y in range(enclosure.y1 + 1, enclosure.y2):
|
||||
field = (x, y)
|
||||
if field not in obstacles:
|
||||
available_fields_small.add(field)
|
||||
if x < enclosure.x2 - 1 and y < enclosure.y2 - 1:
|
||||
available_fields_large.add(field)
|
||||
|
||||
def draw_fields(fields, color):
|
||||
for field in fields:
|
||||
x, y = field
|
||||
pygame.draw.rect(screen, color, (x * GRID_SIZE, y * GRID_SIZE, GRID_SIZE, GRID_SIZE))
|
||||
|
||||
def available_fields_tests():
|
||||
obstacles = generate_obstacles()
|
||||
|
||||
while True:
|
||||
screen.fill(WHITE)
|
||||
|
||||
draw_grid()
|
||||
draw_fields(obstacles, BLACK)
|
||||
|
||||
generate_available_fields()
|
||||
|
||||
draw_fields(available_fields_small, GREEN)
|
||||
draw_fields(available_fields_large, YELLOW)
|
||||
|
||||
# Odświeżenie ekranu
|
||||
pygame.display.flip()
|
||||
# endregion
|
||||
|
||||
# region Main Code
|
||||
def main():
|
||||
initial_state = (0,0,'S')
|
||||
agent = Agent(initial_state, 'images/agent1.png', GRID_SIZE)
|
||||
initial_state = (0, 0, 'S')
|
||||
agent = Agent(initial_state, 'images/agent1.png', const.GRID_SIZE)
|
||||
|
||||
obstacles = generate_obstacles()
|
||||
actions = []
|
||||
clock = pygame.time.Clock()
|
||||
|
||||
spawned = False
|
||||
|
||||
while True:
|
||||
# Manualne poruszanie agentem
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
pygame.quit()
|
||||
sys.exit()
|
||||
agent.handle_event(event, GRID_WIDTH, GRID_HEIGHT, Animals, obstacles)
|
||||
agent.handle_event(event, const.GRID_WIDTH, const.GRID_HEIGHT, Animals, obstacles)
|
||||
|
||||
const.screen.blit(const.background_image, (0, 0))
|
||||
draw_grid(const)
|
||||
draw_enclosures(Enclosures, const)
|
||||
draw_gates(Enclosures, const)
|
||||
|
||||
screen.blit(background_image,(0,0))
|
||||
draw_grid()
|
||||
draw_enclosures()
|
||||
draw_gates()
|
||||
if not spawned:
|
||||
spawn_all_animals()
|
||||
spawn_obstacles()
|
||||
generate_cost_map()
|
||||
cost_map = generate_cost_map(Animals, Terrain_Obstacles)
|
||||
for animal in Animals:
|
||||
animal._feed = 2 # Ustawienie aby zwierzę było głodne
|
||||
animal._feed = 2 # Ustawienie, aby zwierzę było głodne
|
||||
spawned = True
|
||||
draw_Animals()
|
||||
draw_Terrain_Obstacles()
|
||||
agent.draw(screen, GRID_SIZE)
|
||||
|
||||
draw_Animals(Animals, const)
|
||||
draw_Terrain_Obstacles(Terrain_Obstacles, const)
|
||||
agent.draw(const.screen, const.GRID_SIZE)
|
||||
pygame.display.flip()
|
||||
clock.tick(10)
|
||||
|
||||
if actions:
|
||||
action = actions.pop(0)
|
||||
agent.move(action, GRID_WIDTH, GRID_HEIGHT, obstacles, Animals, goal)
|
||||
agent.move(action, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, Animals, goal)
|
||||
pygame.time.wait(200)
|
||||
else:
|
||||
animal = random.choice(Animals)
|
||||
goal = (animal.x, animal.y)
|
||||
|
||||
# --- Zaznaczenie celu ---
|
||||
pygame.draw.rect(screen, RED, (animal.x * GRID_SIZE, animal.y * GRID_SIZE, GRID_SIZE, GRID_SIZE))
|
||||
pygame.display.flip()
|
||||
pygame.time.delay(2000)
|
||||
# ------------------------
|
||||
|
||||
actions = graphsearch(agent.istate, goal, GRID_WIDTH, GRID_HEIGHT, obstacles, cost_map)
|
||||
# endregion
|
||||
|
||||
Walls = []
|
||||
# region A* Test
|
||||
from elephant import Elephant
|
||||
puddle1 = Terrain_Obstacle(15,8,'puddle', puddle_image)
|
||||
bush1 = Terrain_Obstacle(15,6,'bush', bush_image)
|
||||
animal = Elephant(15, 10)
|
||||
animal1 = Elephant(14, 10)
|
||||
animal2 = Elephant(13, 10)
|
||||
animal3 = Elephant(12, 10)
|
||||
animal4 = Elephant(11, 10)
|
||||
#Animals = [animal, animal1, animal2, animal3, animal4] *Uncomment to test A*
|
||||
#Terrain_Obstacles = [puddle1, bush1] *Uncomment to test A*
|
||||
|
||||
empty_rows = [5, 7, 9]
|
||||
|
||||
def generate_test_walls():
|
||||
for x in range(4,26):
|
||||
for y in range(0, 15):
|
||||
if y not in empty_rows:
|
||||
Walls.append((x, y))
|
||||
return Walls
|
||||
|
||||
def draw_test_walls():
|
||||
for wall in generate_test_walls():
|
||||
pygame.draw.rect(screen, BLACK, (wall[0] * GRID_SIZE, wall[1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
|
||||
|
||||
def a_star_testing():
|
||||
initial_state = (0, 7, 'E')
|
||||
agent = Agent(initial_state, 'images/agent1.png', GRID_SIZE)
|
||||
goal = (29, 7)
|
||||
|
||||
actions = []
|
||||
clock = pygame.time.Clock()
|
||||
|
||||
generated = False
|
||||
while True:
|
||||
screen.fill(WHITE)
|
||||
draw_grid()
|
||||
draw_test_walls()
|
||||
draw_Terrain_Obstacles()
|
||||
draw_Animals()
|
||||
if not generated:
|
||||
generate_cost_map()
|
||||
|
||||
agent.draw(screen, GRID_SIZE)
|
||||
pygame.draw.rect(screen, RED, (goal[0] * GRID_SIZE, goal[1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
|
||||
|
||||
pygame.display.flip()
|
||||
clock.tick(10)
|
||||
|
||||
if actions:
|
||||
action = actions.pop(0)
|
||||
agent.move(action, GRID_WIDTH, GRID_HEIGHT, obstacles, Animals, goal)
|
||||
pygame.time.wait(100)
|
||||
else:
|
||||
actions = graphsearch(agent.istate, goal, GRID_WIDTH, GRID_HEIGHT, obstacles, cost_map)
|
||||
# endregion
|
||||
|
||||
class DebugMode(Enum):
|
||||
MAIN = 1
|
||||
AVAILABLE_FIELDS = 2
|
||||
A_STAR_TESTING = 3
|
||||
draw_goal(const, goal)
|
||||
actions = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
|
||||
if __name__ == "__main__":
|
||||
debug_mode = DebugMode.MAIN
|
||||
|
||||
if debug_mode == DebugMode.MAIN:
|
||||
main()
|
||||
elif debug_mode == DebugMode.AVAILABLE_FIELDS:
|
||||
available_fields_tests()
|
||||
elif debug_mode == DebugMode.A_STAR_TESTING:
|
||||
a_star_testing()
|
@ -4,8 +4,6 @@ class Spawner:
|
||||
def __init__(self, entity):
|
||||
self.entity = entity
|
||||
|
||||
|
||||
|
||||
def spawn_animal(self, blocked, taken, enclosures):
|
||||
self.enclosures = [enclosure for enclosure in enclosures if enclosure.type == self.entity.environment]
|
||||
# Wyrażenie listowe filtrujące tylko te wybiegi, które pasują do środowiska zwierzęcia
|
||||
@ -19,9 +17,11 @@ class Spawner:
|
||||
self.entity.x = random.randint(enclosure.x1+1, enclosure.x2)
|
||||
self.entity.y = random.randint(enclosure.y1+1, enclosure.y2)
|
||||
|
||||
if self.check(blocked, taken):
|
||||
if self.check(blocked | {(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}, taken):
|
||||
break
|
||||
|
||||
def spawn_terrain_obstacles(self, blocked1, blocked2, taken, grid_width, grid_height):
|
||||
blocked1 = blocked1 | {(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}
|
||||
while True:
|
||||
self.entity.x = random.randint(0, grid_width - 1)
|
||||
self.entity.y = random.randint(0, grid_height - 1)
|
||||
@ -51,4 +51,3 @@ class Spawner:
|
||||
taken.add((x,y))
|
||||
|
||||
return True
|
||||
|
||||
|
@ -89,11 +89,12 @@ def current_cost(node, cost_map):
|
||||
_, parent, action = node
|
||||
# Dodaj koszt pola z mapy kosztów tylko jeśli akcja to "Forward"
|
||||
if action == 'Go Forward':
|
||||
#if True:
|
||||
state, _, _ = node
|
||||
cost += cost_map.get(state[:2], DEFAULT_COST_VALUE) # Pobiera koszt przejścia przez dane pole, a jeśli koszt nie jest zdefiniowany to bierze wartość domyślną
|
||||
|
||||
if action == 'Turn Right' or action == 'Turn Left':
|
||||
cost += 1
|
||||
cost += DEFAULT_COST_VALUE
|
||||
|
||||
node = parent # Przejdź do rodzica
|
||||
return cost
|
||||
|
||||
@ -101,3 +102,26 @@ def heuristic(state, goal):
|
||||
x, y, _ = state
|
||||
goal_x, goal_y = goal
|
||||
return abs(x - goal_x) + abs(y - goal_y) # Odległość Manhattana do celu
|
||||
|
||||
def generate_cost_map(Animals, Terrain_Obstacles, cost_map={}):
|
||||
adult_animal_cost = 15 # Default : 15
|
||||
baby_animal_cost = 10 # Default : 10
|
||||
puddle_cost = 50 # Default : 50
|
||||
bush_cost = 20 # Default : 20
|
||||
|
||||
for animal in Animals:
|
||||
if animal.adult:
|
||||
cost_map[(animal.x + 1, animal.y + 1)] = adult_animal_cost
|
||||
cost_map[(animal.x + 1, animal.y)] = adult_animal_cost
|
||||
cost_map[(animal.x, animal.y + 1)] = adult_animal_cost
|
||||
cost_map[(animal.x, animal.y)] = adult_animal_cost
|
||||
else:
|
||||
cost_map[(animal.x, animal.y)] = baby_animal_cost
|
||||
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
if terrain_obstacle.type == 'puddle':
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = puddle_cost
|
||||
else:
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = bush_cost
|
||||
|
||||
return cost_map
|
@ -1,5 +1,4 @@
|
||||
import pygame
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class Terrain_Obstacle:
|
||||
def __init__(self, x, y, type , image):
|
||||
@ -11,3 +10,28 @@ class Terrain_Obstacle:
|
||||
def draw(self, screen, grid_size):
|
||||
scaled_image = pygame.transform.scale(self.image, (grid_size, grid_size))
|
||||
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
|
||||
|
||||
def create_obstacles():
|
||||
puddle_image = pygame.image.load('images/puddle.png')
|
||||
bush_image = pygame.image.load('images/bush.png')
|
||||
|
||||
puddle1 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle2 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle3 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle4 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle5 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle6 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle7 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
bush1 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush2 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush3 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush4 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush5 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
|
||||
Terrain_Obstacles = [puddle1, puddle2, puddle3, puddle4, puddle5, puddle6, puddle7, bush1, bush2, bush3, bush4, bush5]
|
||||
|
||||
return Terrain_Obstacles
|
||||
|
||||
def draw_Terrain_Obstacles(Terrain_Obstacles, const):
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
terrain_obstacle.draw(const.screen, const.GRID_SIZE)
|
Loading…
Reference in New Issue
Block a user