Compare commits
No commits in common. "master" and "Drzewa-decyzyjne" have entirely different histories.
master
...
Drzewa-dec
@ -3,5 +3,5 @@
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.9" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (pythonProject)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -1,10 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.10 (pythonProject)" jdkType="Python SDK" />
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -3,22 +3,11 @@ import pygame
|
||||
from abc import abstractmethod
|
||||
|
||||
class Animal:
|
||||
|
||||
def choose_picture(self, name):
|
||||
ran = random.randint(0, 1)
|
||||
if ran == 0:
|
||||
path = f'images/{name}.png'
|
||||
return path
|
||||
else:
|
||||
path = f'images/{name}2.png'
|
||||
return path
|
||||
|
||||
def __init__(self, x, y,name, image_path, food_image, food, environment, activity, ill=False, adult=False,):
|
||||
def __init__(self, x, y,name, image, food_image, food, environment, activity, ill=False, adult=False,):
|
||||
self.x = x - 1
|
||||
self.y = y - 1
|
||||
self.name = name
|
||||
self.image_path = image_path
|
||||
self.image = pygame.image.load(image_path)
|
||||
self.image = image
|
||||
self.adult = adult
|
||||
self.food = food
|
||||
self.food_image = food_image
|
||||
@ -74,13 +63,6 @@ class Animal:
|
||||
illness_image = pygame.transform.scale(illness_image, (int(grid_size * scale), int(grid_size * scale)))
|
||||
screen.blit(illness_image, (x_blit, y * grid_size))
|
||||
|
||||
def draw_snack(self, screen, grid_size, x, y):
|
||||
exclamation_image = pygame.image.load(self.food_image)
|
||||
exclamation_image = pygame.transform.scale(exclamation_image, (int(grid_size * 0.45), int(grid_size * 0.45)))
|
||||
screen.blit(exclamation_image, (x * grid_size, y * grid_size))
|
||||
pygame.display.update()
|
||||
pygame.time.wait(700)
|
||||
|
||||
@abstractmethod
|
||||
def getting_hungry(self):
|
||||
pass
|
@ -4,13 +4,13 @@ from datetime import datetime
|
||||
|
||||
class Bat(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Bat_image = pygame.image.load('images/bat.png')
|
||||
name = 'bat'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
activity = 'nocturnal'
|
||||
super().__init__(x, y,name, image_path, food_image,parrot_food, environment, adult)
|
||||
super().__init__(x, y,name, Bat_image, food_image,parrot_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,14 +4,14 @@ from datetime import datetime
|
||||
|
||||
class Bear(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Bear_image = pygame.image.load('images/bear.png')
|
||||
name = 'bear'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "cold"
|
||||
activity = 'nocturnal'
|
||||
ill = self.is_ill()
|
||||
bear_food = 'meat'
|
||||
food_image = 'images/meat.png'
|
||||
super().__init__(x, y,name, image_path, food_image,bear_food,environment, activity, ill, adult)
|
||||
super().__init__(x, y,name, Bear_image, food_image,bear_food,environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,8 +4,8 @@ from datetime import datetime
|
||||
|
||||
class Elephant(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Elephant_image = pygame.image.load('images/elephant.png')
|
||||
name = 'elephant'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "hot"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
@ -16,7 +16,7 @@ class Elephant(Animal):
|
||||
elephant_food = 'milk'
|
||||
food_image = 'images/milk.png'
|
||||
|
||||
super().__init__(x, y,name, image_path, food_image,elephant_food, environment, activity, ill, adult)
|
||||
super().__init__(x, y,name, Elephant_image, food_image,elephant_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,14 +4,14 @@ from datetime import datetime
|
||||
|
||||
class Giraffe(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Giraffe_image = pygame.image.load('images/giraffe.png')
|
||||
name = 'giraffe'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "hot"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/leaves.png'
|
||||
giraffe_food = 'leaves'
|
||||
super().__init__(x, y, name, image_path, food_image,giraffe_food, environment, activity, ill, adult)
|
||||
super().__init__(x, y, name, Giraffe_image, food_image,giraffe_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,13 +4,13 @@ from datetime import datetime
|
||||
|
||||
class Owl(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Owl_image = pygame.image.load('images/owl.png')
|
||||
name = 'owl'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
activity = 'nocturnal'
|
||||
super().__init__(x, y,name, image_path, food_image,parrot_food, environment, adult)
|
||||
super().__init__(x, y,name, Owl_image, food_image,parrot_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,14 +4,14 @@ from datetime import datetime
|
||||
|
||||
class Parrot(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Parrot_image = pygame.image.load('images/parrot.png')
|
||||
name = 'parrot'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
super().__init__(x, y, name, image_path, food_image, parrot_food, environment, activity, ill, adult)
|
||||
super().__init__(x, y, name, Parrot_image, food_image, parrot_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
@ -4,14 +4,14 @@ from datetime import datetime
|
||||
|
||||
class Penguin(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Penguin_image = pygame.image.load('images/penguin.png')
|
||||
name = 'penguin'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "cold"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/fish.png'
|
||||
penguin_food = 'fish'
|
||||
super().__init__(x, y, name, image_path, food_image, penguin_food, environment, activity, ill, adult)
|
||||
super().__init__(x, y, name, Penguin_image, food_image, penguin_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
19
agent.py
@ -5,19 +5,7 @@ from state_space_search import is_border, is_obstacle
|
||||
from night import draw_night
|
||||
from decision_tree import feed_decision
|
||||
from constants import Constants
|
||||
from classification import AnimalClassifier
|
||||
|
||||
const = Constants()
|
||||
|
||||
classes = [
|
||||
"bat",
|
||||
"bear",
|
||||
"elephant",
|
||||
"giraffe",
|
||||
"owl",
|
||||
"parrot",
|
||||
"penguin"
|
||||
]
|
||||
class Agent:
|
||||
def __init__(self, istate, image_path, grid_size):
|
||||
self.istate = istate
|
||||
@ -80,7 +68,6 @@ class Agent:
|
||||
|
||||
def feed_animal(self, animals, goal,const):
|
||||
goal_x, goal_y = goal
|
||||
neuron = AnimalClassifier('./model/best_model.pth', classes)
|
||||
if self.x == goal_x and self.y == goal_y:
|
||||
for animal in animals:
|
||||
if animal.x == goal_x and animal.y == goal_y:
|
||||
@ -89,12 +76,6 @@ def feed_animal(self, animals, goal,const):
|
||||
else:
|
||||
activity_time = False
|
||||
guests = random.randint(1, 15)
|
||||
guess = neuron.classify(animal.image_path)
|
||||
if guess == animal.name:
|
||||
print(f"I'm sure this is {guess} and i give it {animal.food} as a snack")
|
||||
animal.draw_snack(const.screen, const.GRID_SIZE, animal.x, animal.y)
|
||||
else:
|
||||
print(f"I was wrong, this is not a {guess} but a {animal.name}")
|
||||
decision = feed_decision(animal.adult, activity_time, animal.ill, const.season, guests, animal._feed, self._dryfood, self._wetfood)
|
||||
if decision != [1]:
|
||||
if decision == [2]:
|
||||
|
@ -1,47 +0,0 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import PIL.Image as Image
|
||||
|
||||
class AnimalClassifier:
|
||||
def __init__(self, model_path, classes, image_size=224, mean=None, std=None):
|
||||
self.classes = classes
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.model = torch.load(model_path, map_location=torch.device('cpu'))
|
||||
self.model = self.model.to(self.device)
|
||||
self.model = self.model.eval()
|
||||
self.image_size = image_size
|
||||
self.mean = mean if mean is not None else [0.5164, 0.5147, 0.4746]
|
||||
self.std = std if std is not None else [0.2180, 0.2126, 0.2172]
|
||||
self.image_transforms = transforms.Compose([
|
||||
transforms.Resize((self.image_size, self.image_size)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(self.mean), torch.Tensor(self.std))
|
||||
])
|
||||
|
||||
def classify(self, image_path):
|
||||
image = Image.open(image_path)
|
||||
|
||||
if image.mode == 'RGBA':
|
||||
image = image.convert('RGB')
|
||||
|
||||
image = self.image_transforms(image).float()
|
||||
image = image.unsqueeze(0).to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.model(image)
|
||||
|
||||
_, predicted = torch.max(output.data, 1)
|
||||
|
||||
return self.classes[predicted.item()]
|
||||
|
||||
classes = [
|
||||
"bat",
|
||||
"bear",
|
||||
"elephant",
|
||||
"giraffe",
|
||||
"owl",
|
||||
"parrot",
|
||||
"penguin"
|
||||
]
|
||||
|
||||
|
@ -6,7 +6,7 @@ class Constants:
|
||||
def __init__(self):
|
||||
self.BLACK = (0, 0, 0)
|
||||
self.RED = (255, 0, 0)
|
||||
self.GRID_SIZE = 65
|
||||
self.GRID_SIZE = 50
|
||||
self.GRID_WIDTH = 30
|
||||
self.GRID_HEIGHT = 15
|
||||
self.WINDOW_SIZE = (self.GRID_WIDTH * self.GRID_SIZE, self.GRID_HEIGHT * self.GRID_SIZE)
|
||||
@ -17,10 +17,6 @@ class Constants:
|
||||
|
||||
self.season = random.choice(["spring", "summer", "autumn", "winter"])
|
||||
|
||||
self.SIZE = 224
|
||||
self.mean = [0.5164, 0.5147, 0.4746]
|
||||
self.std = [0.2180, 0.2126, 0.2172]
|
||||
|
||||
def init_pygame(const):
|
||||
pygame.init()
|
||||
const.screen = pygame.display.set_mode(const.WINDOW_SIZE)
|
148
genetics.py
@ -1,148 +0,0 @@
|
||||
from state_space_search import graphsearch, generate_cost_map
|
||||
import random
|
||||
|
||||
# Parametry algorytmu genetycznego
|
||||
POPULATION_SIZE = 700
|
||||
MUTATION_RATE = 0.01
|
||||
NUM_GENERATIONS = 600
|
||||
|
||||
# Generowanie początkowej populacji
|
||||
def generate_individual(animals):
|
||||
return random.sample(animals, len(animals))
|
||||
|
||||
def generate_population(animals, size):
|
||||
return [generate_individual(animals) for _ in range(size)]
|
||||
|
||||
# Obliczanie odległości między zwierzetami
|
||||
def calculate_distance(animal1, animal2):
|
||||
x1, y1 = animal1
|
||||
x2, y2 = animal2
|
||||
return abs(x1 - x2) + abs(y1 - y2) # Odległość Manhattana
|
||||
|
||||
def calculate_total_distance(animals):
|
||||
total_distance = 0
|
||||
for i in range(len(animals) - 1):
|
||||
total_distance += calculate_distance(animals[i], animals[i+1])
|
||||
total_distance += calculate_distance(animals[-1], animals[0]) # Zamknięcie cyklu
|
||||
return total_distance
|
||||
|
||||
# Selekcja rodziców za pomocą metody ruletki
|
||||
def select_parents(population, num_parents):
|
||||
fitness_scores = [1 / calculate_total_distance(individual) for individual in population]
|
||||
total_fitness = sum(fitness_scores)
|
||||
selection_probs = [fitness / total_fitness for fitness in fitness_scores]
|
||||
|
||||
parents = random.choices(population, weights=selection_probs, k=num_parents)
|
||||
return parents
|
||||
|
||||
# Krzyżowanie rodziców (OX,Davis)
|
||||
def crossover(parent1, parent2):
|
||||
child1 = [None] * len(parent1)
|
||||
child2 = [None] * len(parent1)
|
||||
start_index = random.randint(0, len(parent1) - 1)
|
||||
end_index = random.randint(start_index, len(parent1) - 1)
|
||||
child1[start_index:end_index+1] = parent1[start_index:end_index+1]
|
||||
child2[start_index:end_index+1] = parent2[start_index:end_index+1]
|
||||
|
||||
# Uzupełnienie brakujących zwierząt z drugiego rodzica
|
||||
for i in range(len(parent1)):
|
||||
if parent2[i] not in child1:
|
||||
for j in range(len(parent2)):
|
||||
if child1[j] is None:
|
||||
child1[j] = parent2[i]
|
||||
break
|
||||
|
||||
for i in range(len(parent1)):
|
||||
if parent1[i] not in child2:
|
||||
for j in range(len(parent1)):
|
||||
if child2[j] is None:
|
||||
child2[j] = parent1[i]
|
||||
break
|
||||
|
||||
return child1, child2
|
||||
|
||||
# Mutacja: zamiana dwóch losowych zwierząt z prawdopodobieństwem MUTATION_RATE
|
||||
def mutate(individual):
|
||||
if random.random() < MUTATION_RATE:
|
||||
index1, index2 = random.sample(range(len(individual)), 2)
|
||||
individual[index1], individual[index2] = individual[index2], individual[index1]
|
||||
|
||||
# Algorytm genetyczny
|
||||
def genetic_algorithm(animals):
|
||||
population = generate_population(animals, POPULATION_SIZE)
|
||||
|
||||
for generation in range(NUM_GENERATIONS):
|
||||
# Selekcja rodziców
|
||||
parents = select_parents(population, POPULATION_SIZE // 2)
|
||||
|
||||
# Krzyżowanie i tworzenie nowej populacji
|
||||
next_generation = []
|
||||
for i in range(0, len(parents), 2):
|
||||
parent1 = parents[i]
|
||||
if i + 1 < len(parents):
|
||||
parent2 = parents[i + 1]
|
||||
else:
|
||||
parent2 = parents[0]
|
||||
child1, child2 = crossover(parent1, parent2)
|
||||
next_generation.extend([child1, child2])
|
||||
|
||||
# Mutacja nowej populacji
|
||||
for individual in next_generation:
|
||||
mutate(individual)
|
||||
|
||||
# Zastąpienie starej populacji nową
|
||||
population = next_generation
|
||||
|
||||
# Znalezienie najlepszego osobnika
|
||||
best_individual = min(population, key=calculate_total_distance)
|
||||
|
||||
return best_individual
|
||||
|
||||
# def calculate_distance(start, goal, max_x, max_y, obstacles, cost_map):
|
||||
# istate = (start[0], start[1], 'N') # Zakładamy, że zaczynamy od kierunku północnego
|
||||
# actions, cost = graphsearch(istate, goal, max_x, max_y, obstacles, cost_map)
|
||||
# return cost
|
||||
|
||||
# def calculate_total_distance(animals, max_x, max_y, obstacles, cost_map):
|
||||
# total_distance = 0
|
||||
# for i in range(len(animals) - 1):
|
||||
# total_distance += calculate_distance(animals[i], animals[i+1], max_x, max_y, obstacles, cost_map)
|
||||
# total_distance += calculate_distance(animals[-1], animals[0], max_x, max_y, obstacles, cost_map) # Zamknięcie cyklu
|
||||
# return total_distance
|
||||
|
||||
# # Selekcja rodziców za pomocą metody ruletki
|
||||
# def select_parents(population, num_parents, max_x, max_y, obstacles, cost_map):
|
||||
# fitness_scores = [1 / calculate_total_distance(individual, max_x, max_y, obstacles, cost_map) for individual in population]
|
||||
# total_fitness = sum(fitness_scores)
|
||||
# selection_probs = [fitness / total_fitness for fitness in fitness_scores]
|
||||
|
||||
# parents = random.choices(population, weights=selection_probs, k=num_parents)
|
||||
# return parents
|
||||
|
||||
|
||||
# def genetic_algorithm(animals, max_x, max_y, obstacles, cost_map):
|
||||
# population = generate_population(animals, POPULATION_SIZE)
|
||||
|
||||
# for generation in range(NUM_GENERATIONS):
|
||||
# # Selekcja rodziców
|
||||
# parents = select_parents(population, POPULATION_SIZE // 2, max_x, max_y, obstacles, cost_map)
|
||||
|
||||
# # Krzyżowanie i tworzenie nowej populacji
|
||||
# next_generation = []
|
||||
# for i in range(0, len(parents), 2):
|
||||
# parent1 = parents[i]
|
||||
# parent2 = parents[i + 1]
|
||||
# child1, child2 = crossover(parent1, parent2)
|
||||
# next_generation.extend([child1, child2])
|
||||
|
||||
# # Mutacja nowej populacji
|
||||
# for individual in next_generation:
|
||||
# mutate(individual)
|
||||
|
||||
# # Zastąpienie starej populacji nową
|
||||
# population = next_generation
|
||||
|
||||
# # Znalezienie najlepszego osobnika
|
||||
# best_individual = min(population, key=lambda individual: calculate_total_distance(individual, max_x, max_y, obstacles, cost_map))
|
||||
|
||||
# return best_individual
|
BIN
images/bat.png
Before Width: | Height: | Size: 458 KiB After Width: | Height: | Size: 740 KiB |
BIN
images/bat2.png
Before Width: | Height: | Size: 438 KiB |
BIN
images/bear2.png
Before Width: | Height: | Size: 366 KiB |
Before Width: | Height: | Size: 373 KiB After Width: | Height: | Size: 642 KiB |
Before Width: | Height: | Size: 294 KiB |
Before Width: | Height: | Size: 161 KiB After Width: | Height: | Size: 444 KiB |
Before Width: | Height: | Size: 1.7 MiB |
BIN
images/owl.png
Before Width: | Height: | Size: 178 KiB After Width: | Height: | Size: 286 KiB |
BIN
images/owl2.png
Before Width: | Height: | Size: 1.5 MiB |
Before Width: | Height: | Size: 268 KiB |
Before Width: | Height: | Size: 176 KiB |
53
main.py
@ -13,7 +13,6 @@ from constants import Constants, init_pygame
|
||||
from draw import draw_goal, draw_grid, draw_house
|
||||
from season import draw_background
|
||||
from night import change_time
|
||||
from genetics import genetic_algorithm
|
||||
|
||||
const = Constants()
|
||||
init_pygame(const)
|
||||
@ -78,13 +77,12 @@ def main():
|
||||
actions = []
|
||||
clock = pygame.time.Clock()
|
||||
spawned = False
|
||||
route = False
|
||||
|
||||
# # Lista zawierająca klatki do odwiedzenia
|
||||
# enclosures_to_visit = Enclosures.copy()
|
||||
# current_enclosure_index = -1 # Indeks bieżącej klatki
|
||||
# actions_to_compare_list = [] # Lista zawierająca ścieżki do porównania
|
||||
# goals_to_compare_list = list() # Lista zawierająca cele do porównania
|
||||
# Lista zawierająca klatki do odwiedzenia
|
||||
enclosures_to_visit = Enclosures.copy()
|
||||
current_enclosure_index = -1 # Indeks bieżącej klatki
|
||||
actions_to_compare_list = [] # Lista zawierająca ścieżki do porównania
|
||||
goals_to_compare_list = list() # Lista zawierająca cele do porównania
|
||||
|
||||
while True:
|
||||
for event in pygame.event.get():
|
||||
@ -95,6 +93,7 @@ def main():
|
||||
|
||||
change_time(const)
|
||||
draw_background(const)
|
||||
draw_grid(const)
|
||||
draw_enclosures(Enclosures, const)
|
||||
draw_gates(Enclosures, const)
|
||||
draw_house(const)
|
||||
@ -108,11 +107,6 @@ def main():
|
||||
animal._feed = random.randint(0, 10)
|
||||
spawned = True
|
||||
|
||||
if not route:
|
||||
animals = [(animal.x, animal.y) for animal in Animals]
|
||||
best_route = genetic_algorithm(animals)
|
||||
route = True
|
||||
|
||||
draw_Animals(Animals, const)
|
||||
draw_Terrain_Obstacles(Terrain_Obstacles, const)
|
||||
agent.draw(const)
|
||||
@ -125,34 +119,31 @@ def main():
|
||||
pygame.time.wait(200)
|
||||
else:
|
||||
if agent._dryfood > 1 and agent._wetfood > 1 :
|
||||
# if not goals_to_compare_list:
|
||||
# current_enclosure_index = (current_enclosure_index + 1) % len(enclosures_to_visit)
|
||||
# current_enclosure = enclosures_to_visit[current_enclosure_index]
|
||||
if not goals_to_compare_list:
|
||||
current_enclosure_index = (current_enclosure_index + 1) % len(enclosures_to_visit)
|
||||
current_enclosure = enclosures_to_visit[current_enclosure_index]
|
||||
|
||||
# for animal in current_enclosure.animals:
|
||||
# goal = (animal.x, animal.y)
|
||||
# goals_to_compare_list.append(goal)
|
||||
for animal in current_enclosure.animals:
|
||||
goal = (animal.x, animal.y)
|
||||
goals_to_compare_list.append(goal)
|
||||
|
||||
# actions_to_compare = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
# actions_to_compare_list.append((actions_to_compare, goal))
|
||||
actions_to_compare = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
actions_to_compare_list.append((actions_to_compare, goal))
|
||||
|
||||
# chosen_path_and_goal = min(actions_to_compare_list, key=lambda x: len(x[0]))
|
||||
# goal = chosen_path_and_goal[1]
|
||||
# draw_goal(const, goal)
|
||||
|
||||
# # Usuń wybrany element z listy
|
||||
# actions_to_compare_list.remove(chosen_path_and_goal)
|
||||
# goals_to_compare_list.remove(goal)
|
||||
goal = best_route.pop(0)
|
||||
best_route.append(goal)
|
||||
chosen_path_and_goal = min(actions_to_compare_list, key=lambda x: len(x[0]))
|
||||
goal = chosen_path_and_goal[1]
|
||||
draw_goal(const, goal)
|
||||
|
||||
actions, cost = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
# Usuń wybrany element z listy
|
||||
actions_to_compare_list.remove(chosen_path_and_goal)
|
||||
goals_to_compare_list.remove(goal)
|
||||
|
||||
actions = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
|
||||
else:
|
||||
goal = (3,1)
|
||||
draw_goal(const, goal)
|
||||
actions, cost = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
actions = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 107 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 77 KiB |
Before Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 126 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 30 KiB |
129
model/model.py
@ -1,129 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision.datasets
|
||||
from torchvision import datasets, transforms, models
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
def set_device():
|
||||
if torch.cuda.is_available():
|
||||
device = 'cuda'
|
||||
else:
|
||||
device = 'cpu'
|
||||
return torch.device(device)
|
||||
|
||||
|
||||
train_dataset_path = './data/train'
|
||||
test_dataset_path = './data/val'
|
||||
number_of_classes = 7
|
||||
|
||||
SIZE = 224
|
||||
mean = [0.5164, 0.5147, 0.4746]
|
||||
std = [0.2180, 0.2126, 0.2172]
|
||||
|
||||
train_transforms = transforms.Compose([
|
||||
transforms.Resize((SIZE, SIZE)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.RandomRotation(10),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
|
||||
])
|
||||
|
||||
test_transforms = transforms.Compose([
|
||||
transforms.Resize((SIZE, SIZE)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
|
||||
])
|
||||
|
||||
train_dataset = torchvision.datasets.ImageFolder(root=train_dataset_path, transform=train_transforms)
|
||||
test_dataset = torchvision.datasets.ImageFolder(root=test_dataset_path, transform=test_transforms)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||
|
||||
resnet18_model = models.resnet18(weights=None)
|
||||
num_ftrs = resnet18_model.fc.in_features
|
||||
resnet18_model.fc = nn.Linear(num_ftrs, number_of_classes)
|
||||
device = set_device()
|
||||
resnet18_model = resnet18_model.to(device)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
optimizer = optim.SGD(resnet18_model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.003)
|
||||
|
||||
|
||||
def save_checkpoint(model, epoch, optimizer, best_acc):
|
||||
state = {
|
||||
'epoch': epoch + 1,
|
||||
'model': model.state_dict(),
|
||||
'best accuracy': best_acc,
|
||||
'optimizer': optimizer.state_dict()
|
||||
}
|
||||
torch.save(state, 'model_best_checkpoint.pth.tar')
|
||||
def train_nn(model, train_loader, test_loader, criterion, optimizer, n_epochs):
|
||||
device = set_device()
|
||||
best_acc = 0
|
||||
|
||||
for epoch in range(n_epochs):
|
||||
print("Epoch number %d " % (epoch + 1))
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
running_correct = 0.0
|
||||
total = 0
|
||||
|
||||
for data in train_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
total += labels.size(0)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
running_correct += (labels == predicted).sum().item()
|
||||
|
||||
epoch_loss = running_loss/len(train_loader)
|
||||
epoch_acc = 100 * running_correct / total
|
||||
print(f"Training dataset. Got {running_correct} out of {total} images correctly ({epoch_acc}). Epoch loss: {epoch_loss}")
|
||||
|
||||
test_data_acc = evaluate_model_on_test_set(model, test_loader)
|
||||
|
||||
if test_data_acc > best_acc:
|
||||
best_acc = test_data_acc
|
||||
save_checkpoint(model, epoch, optimizer, best_acc)
|
||||
|
||||
print("Finished")
|
||||
return model
|
||||
def evaluate_model_on_test_set(model, test_loader):
|
||||
model.eval()
|
||||
predicted_correctly_on_epoch = 0
|
||||
total = 0
|
||||
device = set_device()
|
||||
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
total += labels.size(0)
|
||||
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
|
||||
predicted_correctly_on_epoch += (predicted == labels).sum().item()
|
||||
|
||||
epoch_acc = 100 * predicted_correctly_on_epoch / total
|
||||
print(f"Testing dataset. Got {predicted_correctly_on_epoch} out of {total} images correctly ({epoch_acc})")
|
||||
return epoch_acc
|
||||
|
||||
|
||||
train_nn(resnet18_model, train_loader, test_loader, loss_fn, optimizer, n_epochs=30)
|
||||
|
||||
checkpoint = torch.load('model_best_checkpoint.pth.tar')
|
||||
resnet18_model.load_state_dict(checkpoint['model'])
|
||||
torch.save(resnet18_model, 'best_model.pth')
|
@ -40,7 +40,7 @@ def graphsearch(istate, goal, max_x, max_y, obstacles, cost_map):
|
||||
state, _, _ = node
|
||||
|
||||
if goaltest(state, goal):
|
||||
return build_action_sequence(node), current_cost(node, cost_map)
|
||||
return build_action_sequence(node)
|
||||
|
||||
explored.add(state)
|
||||
|
||||
@ -61,7 +61,7 @@ def graphsearch(istate, goal, max_x, max_y, obstacles, cost_map):
|
||||
else:
|
||||
break
|
||||
|
||||
return False, float('inf')
|
||||
return False
|
||||
|
||||
def is_state_in_queue(state, queue):
|
||||
for _, (s, _, _) in queue.queue:
|
||||
@ -125,4 +125,3 @@ def generate_cost_map(Animals, Terrain_Obstacles, cost_map={}):
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = bush_cost
|
||||
|
||||
return cost_map
|
||||
|
||||
|