Compare commits
No commits in common. "master" and "reprezentacja_wiedzy2" have entirely different histories.
master
...
reprezenta
1
.gitignore
vendored
@ -1 +0,0 @@
|
||||
*.pyc
|
@ -3,5 +3,5 @@
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.9" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (pythonProject)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -1,10 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.10 (pythonProject)" jdkType="Python SDK" />
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -1,6 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
5
.vscode/settings.json
vendored
@ -1,5 +0,0 @@
|
||||
{
|
||||
"python.analysis.extraPaths": [
|
||||
"./Animals"
|
||||
]
|
||||
}
|
@ -1,86 +0,0 @@
|
||||
import random
|
||||
import pygame
|
||||
from abc import abstractmethod
|
||||
|
||||
class Animal:
|
||||
|
||||
def choose_picture(self, name):
|
||||
ran = random.randint(0, 1)
|
||||
if ran == 0:
|
||||
path = f'images/{name}.png'
|
||||
return path
|
||||
else:
|
||||
path = f'images/{name}2.png'
|
||||
return path
|
||||
|
||||
def __init__(self, x, y,name, image_path, food_image, food, environment, activity, ill=False, adult=False,):
|
||||
self.x = x - 1
|
||||
self.y = y - 1
|
||||
self.name = name
|
||||
self.image_path = image_path
|
||||
self.image = pygame.image.load(image_path)
|
||||
self.adult = adult
|
||||
self.food = food
|
||||
self.food_image = food_image
|
||||
self._feed = 0
|
||||
self.environment = environment # hot/cold/medium
|
||||
self.activity = activity # diurnal/nocturnal
|
||||
self.ill = ill
|
||||
|
||||
def draw(self, screen, grid_size):
|
||||
if self.adult:
|
||||
# Jeśli zwierzę jest dorosłe, skaluj obrazek na większy rozmiar
|
||||
new_width = grid_size * 2
|
||||
new_height = grid_size * 2
|
||||
scaled_image = pygame.transform.scale(self.image, (new_width, new_height))
|
||||
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
|
||||
else:
|
||||
# Jeśli zwierzę nie jest dorosłe, skaluj obrazek na rozmiar jednej kratki
|
||||
scaled_image = pygame.transform.scale(self.image, (grid_size, grid_size))
|
||||
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
|
||||
|
||||
def draw_exclamation(self, screen, grid_size, x, y):
|
||||
exclamation_image = pygame.image.load('images/exclamation.png')
|
||||
exclamation_image = pygame.transform.scale(exclamation_image, (int(grid_size * 0.45), int(grid_size * 0.45)))
|
||||
screen.blit(exclamation_image, (x * grid_size, y * grid_size))
|
||||
|
||||
def draw_food(self, screen, grid_size, x, y,food_image):
|
||||
scale = 0.45
|
||||
food_image = pygame.image.load(food_image)
|
||||
|
||||
if(self.adult):
|
||||
y = y + 1
|
||||
scale = 0.7
|
||||
food_image = pygame.transform.scale(food_image, (int(grid_size * scale), int(grid_size * scale)))
|
||||
screen.blit(food_image, (x * grid_size, (y + 1) * grid_size - int(grid_size * scale)))
|
||||
|
||||
def is_ill(self):
|
||||
chance = random.randint(1, 100)
|
||||
if chance >= 90:
|
||||
return True
|
||||
else: return False
|
||||
|
||||
def draw_illness(self, screen, grid_size, x, y):
|
||||
scale = 0.45
|
||||
illness_image = pygame.image.load('images/ill.png')
|
||||
y = y
|
||||
|
||||
if self.adult:
|
||||
x = x + 1
|
||||
y = y
|
||||
scale = 0.7
|
||||
|
||||
x_blit = x * grid_size + (grid_size - int(grid_size * scale))
|
||||
illness_image = pygame.transform.scale(illness_image, (int(grid_size * scale), int(grid_size * scale)))
|
||||
screen.blit(illness_image, (x_blit, y * grid_size))
|
||||
|
||||
def draw_snack(self, screen, grid_size, x, y):
|
||||
exclamation_image = pygame.image.load(self.food_image)
|
||||
exclamation_image = pygame.transform.scale(exclamation_image, (int(grid_size * 0.45), int(grid_size * 0.45)))
|
||||
screen.blit(exclamation_image, (x * grid_size, y * grid_size))
|
||||
pygame.display.update()
|
||||
pygame.time.wait(700)
|
||||
|
||||
@abstractmethod
|
||||
def getting_hungry(self):
|
||||
pass
|
@ -1,62 +0,0 @@
|
||||
from elephant import Elephant
|
||||
from giraffe import Giraffe
|
||||
from penguin import Penguin
|
||||
from parrot import Parrot
|
||||
from bear import Bear
|
||||
from owl import Owl
|
||||
from bat import Bat
|
||||
|
||||
def create_animals():
|
||||
giraffe1 = Giraffe(0, 0, adult=True)
|
||||
giraffe2 = Giraffe(0, 0, adult=True)
|
||||
giraffe3 = Giraffe(0, 0, adult=True)
|
||||
giraffe4 = Giraffe(0, 0)
|
||||
giraffe5 = Giraffe(0, 0)
|
||||
bear1 = Bear(0, 0, adult=True)
|
||||
bear2 = Bear(0, 0, adult=True)
|
||||
bear3 = Bear(0, 0)
|
||||
bear4 = Bear(0, 0)
|
||||
bear5 = Bear(0, 0)
|
||||
penguin1 = Penguin(0, 0)
|
||||
penguin2 = Penguin(0, 0)
|
||||
penguin3 = Penguin(0, 0)
|
||||
penguin4 = Penguin(0, 0)
|
||||
elephant1 = Elephant(0, 0, adult=True)
|
||||
elephant2 = Elephant(0, 0, adult=True)
|
||||
elephant3 = Elephant(0, 0)
|
||||
elephant4 = Elephant(0, 0)
|
||||
elephant5 = Elephant(0, 0)
|
||||
parrot1 = Parrot(0, 0)
|
||||
parrot2 = Parrot(0, 0)
|
||||
owl1 = Owl(0, 0)
|
||||
owl2 = Owl(0, 0)
|
||||
bat1 = Bat(0, 0)
|
||||
bat2 = Bat(0, 0)
|
||||
|
||||
Animals = [giraffe1, giraffe2, giraffe3, giraffe4, giraffe5,
|
||||
bear1, bear2, bear3, bear4, bear5,
|
||||
elephant1, elephant2, elephant3, elephant4, elephant5,
|
||||
penguin1, penguin2, penguin3, penguin4,
|
||||
parrot1, parrot2, owl1, owl2, bat1, bat2]
|
||||
|
||||
return Animals
|
||||
|
||||
def draw_Animals(Animals, const):
|
||||
for Animal in Animals:
|
||||
Animal.draw(const.screen, const.GRID_SIZE)
|
||||
|
||||
hunger_level = Animal.getting_hungry(const)
|
||||
|
||||
if hunger_level >= 9:
|
||||
food_image = 'images/empty_bowl.png'
|
||||
elif hunger_level >= 8:
|
||||
food_image = 'images/almost_empty.png'
|
||||
elif hunger_level >= 5:
|
||||
food_image = 'images/half_bowl.png'
|
||||
else:
|
||||
food_image = 'images/full_bowl.png'
|
||||
|
||||
Animal.draw_food(const.screen, const.GRID_SIZE, Animal.x, Animal.y, food_image)
|
||||
|
||||
if Animal.ill:
|
||||
Animal.draw_illness(const.screen, const.GRID_SIZE, Animal.x, Animal.y)
|
@ -1,26 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Bat(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'bat'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
activity = 'nocturnal'
|
||||
super().__init__(x, y,name, image_path, food_image,parrot_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (25)
|
||||
self._starttime = checktime
|
||||
|
||||
if const.IS_NIGHT and self._feed < 10:
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
|
||||
return self._feed
|
@ -1,27 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Bear(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'bear'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "cold"
|
||||
activity = 'nocturnal'
|
||||
ill = self.is_ill()
|
||||
bear_food = 'meat'
|
||||
food_image = 'images/meat.png'
|
||||
super().__init__(x, y,name, image_path, food_image,bear_food,environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (45)
|
||||
self._starttime = checktime
|
||||
|
||||
if const.IS_NIGHT and self._feed < 10 and const.season != "winter":
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
return self._feed
|
@ -1,26 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Giraffe(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'giraffe'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "hot"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/leaves.png'
|
||||
giraffe_food = 'leaves'
|
||||
super().__init__(x, y, name, image_path, food_image,giraffe_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (60)
|
||||
self._starttime = checktime
|
||||
|
||||
if not const.IS_NIGHT and self._feed < 10:
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
return self._feed
|
@ -1,26 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Owl(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'owl'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
activity = 'nocturnal'
|
||||
super().__init__(x, y,name, image_path, food_image,parrot_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (50)
|
||||
self._starttime = checktime
|
||||
|
||||
if const.IS_NIGHT and self._feed < 10:
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
|
||||
return self._feed
|
@ -1,26 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Parrot(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'parrot'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "medium"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
super().__init__(x, y, name, image_path, food_image, parrot_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (30)
|
||||
self._starttime = checktime
|
||||
|
||||
if not const.IS_NIGHT and self._feed < 10:
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
return self._feed
|
@ -1,26 +0,0 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
class Penguin(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
name = 'penguin'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "cold"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
food_image = 'images/fish.png'
|
||||
penguin_food = 'fish'
|
||||
super().__init__(x, y, name, image_path, food_image, penguin_food, environment, activity, ill, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (25)
|
||||
self._starttime = checktime
|
||||
|
||||
if not const.IS_NIGHT and self._feed < 10:
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
return self._feed
|
BIN
__pycache__/adult_animal.cpython-311.pyc
Normal file
BIN
__pycache__/agent.cpython-311.pyc
Normal file
BIN
__pycache__/animal.cpython-311.pyc
Normal file
BIN
__pycache__/bear.cpython-311.pyc
Normal file
BIN
__pycache__/combined_animal.cpython-311.pyc
Normal file
BIN
__pycache__/elephant.cpython-311.pyc
Normal file
BIN
__pycache__/giraffe.cpython-311.pyc
Normal file
BIN
__pycache__/parrot.cpython-311.pyc
Normal file
BIN
__pycache__/penguin.cpython-311.pyc
Normal file
138
agent.py
@ -1,128 +1,34 @@
|
||||
import pygame
|
||||
import random
|
||||
from constants import Constants
|
||||
from state_space_search import is_border, is_obstacle
|
||||
from night import draw_night
|
||||
from decision_tree import feed_decision
|
||||
from constants import Constants
|
||||
from classification import AnimalClassifier
|
||||
|
||||
const = Constants()
|
||||
|
||||
classes = [
|
||||
"bat",
|
||||
"bear",
|
||||
"elephant",
|
||||
"giraffe",
|
||||
"owl",
|
||||
"parrot",
|
||||
"penguin"
|
||||
]
|
||||
class Agent:
|
||||
def __init__(self, istate, image_path, grid_size):
|
||||
self.istate = istate
|
||||
self.x, self.y, self.direction = istate
|
||||
def __init__(self, x, y, image_path, grid_size):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.grid_size = grid_size
|
||||
self.image= pygame.image.load(image_path)
|
||||
self.image = pygame.image.load(image_path)
|
||||
self.image = pygame.transform.scale(self.image, (grid_size, grid_size))
|
||||
self._dryfood = 0
|
||||
self._wetfood = 0
|
||||
|
||||
def draw(self, const):
|
||||
# Obróć obrazek zgodnie z kierunkiem
|
||||
if self.direction == 'E':
|
||||
self.image= pygame.image.load('images/agent4.png')
|
||||
elif self.direction == 'S':
|
||||
self.image= pygame.image.load('images/agent1.png')
|
||||
elif self.direction == 'W':
|
||||
self.image= pygame.image.load('images/agent3.png')
|
||||
else: # direction == 'N'
|
||||
self.image= pygame.image.load('images/agent2.png')
|
||||
self.image = pygame.transform.scale(self.image, (const.GRID_SIZE, const.GRID_SIZE))
|
||||
const.screen.blit(self.image, (self.x * self.grid_size, self.y * self.grid_size))
|
||||
|
||||
if const.IS_NIGHT: draw_night(const)
|
||||
def draw(self, screen):
|
||||
screen.blit(self.image, (self.x * self.grid_size, self.y * self.grid_size))
|
||||
|
||||
def handle_event(self, event, max_x, max_y, animals, obstacles,const):
|
||||
def move(self, dx, dy):
|
||||
self.x += dx
|
||||
self.y += dy
|
||||
|
||||
def handle_event(self, event, grid_height,grid_width, animals, blocked_fields):
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_UP:
|
||||
self.move('Go Forward', max_x, max_y, obstacles, animals,const)
|
||||
elif event.key == pygame.K_LEFT:
|
||||
self.move('Turn Left', max_x, max_y, obstacles, animals,const)
|
||||
elif event.key == pygame.K_RIGHT:
|
||||
self.move('Turn Right', max_x, max_y, obstacles, animals,const)
|
||||
if event.key == pygame.K_UP and self.y > 0 and (self.x, self.y-1) not in blocked_fields:
|
||||
self.move(0, -1)
|
||||
elif event.key == pygame.K_DOWN and self.y < grid_height - 1 and (self.x, self.y+1) not in blocked_fields:
|
||||
self.move(0, 1)
|
||||
elif event.key == pygame.K_LEFT and self.x > 0 and (self.x-1, self.y) not in blocked_fields:
|
||||
self.move(-1, 0)
|
||||
elif event.key == pygame.K_RIGHT and self.x < grid_width - 1 and (self.x+1, self.y) not in blocked_fields:
|
||||
self.move(1, 0)
|
||||
|
||||
def move(self, action, max_x, max_y, obstacles, animals, goal,const):
|
||||
if action == 'Go Forward':
|
||||
new_x, new_y = self.x, self.y
|
||||
if self.direction == 'N':
|
||||
new_y -= 1
|
||||
elif self.direction == 'E':
|
||||
new_x += 1
|
||||
elif self.direction == 'S':
|
||||
new_y += 1
|
||||
elif self.direction == 'W':
|
||||
new_x -= 1
|
||||
|
||||
# Sprawdź, czy nowe położenie mieści się w granicach kraty i nie jest przeszkodą
|
||||
if is_border(new_x, new_y, max_x, max_y) and not(is_obstacle(new_x, new_y, obstacles)):
|
||||
self.x, self.y = new_x, new_y
|
||||
|
||||
elif action == 'Turn Left':
|
||||
self.direction = {'N': 'W', 'W': 'S', 'S': 'E', 'E': 'N'}[self.direction]
|
||||
|
||||
elif action == 'Turn Right':
|
||||
self.direction = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'}[self.direction]
|
||||
|
||||
self.istate = (self.x, self.y, self.direction)
|
||||
feed_animal(self, animals, goal,const)
|
||||
take_food(self)
|
||||
|
||||
def feed_animal(self, animals, goal,const):
|
||||
goal_x, goal_y = goal
|
||||
neuron = AnimalClassifier('./model/best_model.pth', classes)
|
||||
if self.x == goal_x and self.y == goal_y:
|
||||
for animal in animals:
|
||||
if animal.x == goal_x and animal.y == goal_y:
|
||||
if (animal.activity == 'nocturnal' and const.IS_NIGHT) or (animal.activity == 'diurnal' and not(const.IS_NIGHT)):
|
||||
activity_time = True
|
||||
else:
|
||||
activity_time = False
|
||||
guests = random.randint(1, 15)
|
||||
guess = neuron.classify(animal.image_path)
|
||||
if guess == animal.name:
|
||||
print(f"I'm sure this is {guess} and i give it {animal.food} as a snack")
|
||||
animal.draw_snack(const.screen, const.GRID_SIZE, animal.x, animal.y)
|
||||
else:
|
||||
print(f"I was wrong, this is not a {guess} but a {animal.name}")
|
||||
decision = feed_decision(animal.adult, activity_time, animal.ill, const.season, guests, animal._feed, self._dryfood, self._wetfood)
|
||||
if decision != [1]:
|
||||
if decision == [2]:
|
||||
if animal.getting_hungry(const=Constants()) < self._wetfood :
|
||||
self._wetfood -= animal._feed
|
||||
if self.x == animal.x and self.y == animal.y:
|
||||
if animal.feed()== 'True':
|
||||
animal._feed = 0
|
||||
else:
|
||||
animal._feed -= self._wetfood
|
||||
self._wetfood = 0
|
||||
print(animal.name, "fed with wet food")
|
||||
else:
|
||||
if animal.getting_hungry(const=Constants()) < self._dryfood :
|
||||
self._dryfood -= animal._feed
|
||||
animal._feed = 0
|
||||
else:
|
||||
animal._feed -= self._dryfood
|
||||
self._dryfood = 0
|
||||
print(animal.name, "fed with dry food")
|
||||
print("Current wet food level: ", self._wetfood)
|
||||
print("Current dry food level: ", self._dryfood)
|
||||
else: print(animal.name, " not fed")
|
||||
|
||||
|
||||
def take_food(self):
|
||||
house_x = 3
|
||||
house_y = 1
|
||||
if self.x == house_x and self.y == house_y:
|
||||
if self._dryfood < 1 or self._wetfood < 1:
|
||||
self._dryfood = 50
|
||||
self._wetfood = 50
|
||||
print("Agent took food and current food level is", self._dryfood, self._wetfood)
|
||||
print(animal.name,"fed with",animal.food)
|
||||
|
47
animal.py
Normal file
@ -0,0 +1,47 @@
|
||||
import pygame
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class Animal:
|
||||
def __init__(self, x, y,name, image, food_image, food, environment, adult=False,):
|
||||
self.x = x - 1
|
||||
self.y = y - 1
|
||||
self.name = name
|
||||
self.image = image
|
||||
self.adult = adult
|
||||
self.food = food
|
||||
self.food_image = food_image
|
||||
self._feed = 0
|
||||
self.environment = environment #hot/cold/medium
|
||||
|
||||
def draw(self, screen, grid_size):
|
||||
self.image = pygame.transform.scale(self.image, (grid_size, grid_size))
|
||||
if self.adult:
|
||||
# If adult, draw like AdultAnimal
|
||||
new_width = grid_size * 2
|
||||
new_height = grid_size * 2
|
||||
scaled_image = pygame.transform.scale(self.image, (new_width, new_height))
|
||||
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
|
||||
else:
|
||||
# If not adult, draw like normal Animal
|
||||
screen.blit(self.image, (self.x * grid_size, self.y * grid_size))
|
||||
|
||||
def draw_exclamation(self, screen, grid_size, x, y):
|
||||
exclamation_image = pygame.image.load('images/exclamation.png')
|
||||
exclamation_image = pygame.transform.scale(exclamation_image, (grid_size,grid_size))
|
||||
screen.blit(exclamation_image, (x*grid_size, y*grid_size - grid_size))
|
||||
|
||||
def draw_food(self, screen, grid_size, x, y):
|
||||
food_image = pygame.image.load(self.food_image)
|
||||
food_image = pygame.transform.scale(food_image, (grid_size,grid_size))
|
||||
screen.blit(food_image, (x*grid_size, y*grid_size + grid_size))
|
||||
|
||||
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def feed(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def getting_hungry(self):
|
||||
pass
|
32
bear.py
Normal file
@ -0,0 +1,32 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Bear(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Bear_image = pygame.image.load('images/bear.png')
|
||||
name = 'bear'
|
||||
environment = "cold"
|
||||
bear_food = 'meat'
|
||||
food_image = 'images/meat.png'
|
||||
super().__init__(x, y,name, Bear_image, food_image,bear_food,environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
|
||||
|
||||
def feed(self):
|
||||
self.getting_hungry()
|
||||
if self._feed < 2:
|
||||
return 'False'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
|
||||
def getting_hungry(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / 60
|
||||
self._feed += minutes_passed
|
||||
self._starttime = checktime
|
@ -1,47 +0,0 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import PIL.Image as Image
|
||||
|
||||
class AnimalClassifier:
|
||||
def __init__(self, model_path, classes, image_size=224, mean=None, std=None):
|
||||
self.classes = classes
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.model = torch.load(model_path, map_location=torch.device('cpu'))
|
||||
self.model = self.model.to(self.device)
|
||||
self.model = self.model.eval()
|
||||
self.image_size = image_size
|
||||
self.mean = mean if mean is not None else [0.5164, 0.5147, 0.4746]
|
||||
self.std = std if std is not None else [0.2180, 0.2126, 0.2172]
|
||||
self.image_transforms = transforms.Compose([
|
||||
transforms.Resize((self.image_size, self.image_size)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(self.mean), torch.Tensor(self.std))
|
||||
])
|
||||
|
||||
def classify(self, image_path):
|
||||
image = Image.open(image_path)
|
||||
|
||||
if image.mode == 'RGBA':
|
||||
image = image.convert('RGB')
|
||||
|
||||
image = self.image_transforms(image).float()
|
||||
image = image.unsqueeze(0).to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.model(image)
|
||||
|
||||
_, predicted = torch.max(output.data, 1)
|
||||
|
||||
return self.classes[predicted.item()]
|
||||
|
||||
classes = [
|
||||
"bat",
|
||||
"bear",
|
||||
"elephant",
|
||||
"giraffe",
|
||||
"owl",
|
||||
"parrot",
|
||||
"penguin"
|
||||
]
|
||||
|
||||
|
26
constants.py
@ -1,26 +0,0 @@
|
||||
import random
|
||||
import pygame
|
||||
import time
|
||||
|
||||
class Constants:
|
||||
def __init__(self):
|
||||
self.BLACK = (0, 0, 0)
|
||||
self.RED = (255, 0, 0)
|
||||
self.GRID_SIZE = 65
|
||||
self.GRID_WIDTH = 30
|
||||
self.GRID_HEIGHT = 15
|
||||
self.WINDOW_SIZE = (self.GRID_WIDTH * self.GRID_SIZE, self.GRID_HEIGHT * self.GRID_SIZE)
|
||||
self.background_image = pygame.transform.scale(pygame.image.load('images/tło.jpg'), self.WINDOW_SIZE)
|
||||
|
||||
self.IS_NIGHT = False
|
||||
self.TIME_CHANGE = time.time() + 60
|
||||
|
||||
self.season = random.choice(["spring", "summer", "autumn", "winter"])
|
||||
|
||||
self.SIZE = 224
|
||||
self.mean = [0.5164, 0.5147, 0.4746]
|
||||
self.std = [0.2180, 0.2126, 0.2172]
|
||||
|
||||
def init_pygame(const):
|
||||
pygame.init()
|
||||
const.screen = pygame.display.set_mode(const.WINDOW_SIZE)
|
313
dane.csv
@ -1,313 +0,0 @@
|
||||
adult,active_time,ill,season,guests,hunger,wet_food,dry_food,decision
|
||||
True,True,True,spring,12,4.0462,37.63803,5.60819,2
|
||||
True,False,False,spring,9,2.89229,34.37597,27.75948,1
|
||||
False,True,True,summer,15,2.4002,45.06447,41.50999,3
|
||||
True,False,False,summer,5,0.73248,46.1058,33.44281,1
|
||||
True,False,False,summer,12,0.62973,49.99647,41.07699,1
|
||||
True,False,False,winter,9,7.0889,46.16796,45.904,2
|
||||
False,True,False,summer,2,9.07977,22.08011,20.53507,3
|
||||
False,False,True,winter,11,3.5635,14.75823,43.46342,2
|
||||
False,False,True,winter,9,8.03113,20.6384,30.81177,2
|
||||
True,True,True,summer,0,0.01966,28.27203,3.37575,1
|
||||
False,False,False,autumn,12,8.27518,5.91931,1.10505,2
|
||||
False,False,True,summer,1,5.058,11.01892,48.04589,3
|
||||
False,True,False,winter,9,5.64777,17.19678,12.20864,1
|
||||
True,True,True,summer,0,6.86046,19.03315,47.13198,3
|
||||
True,False,True,winter,13,0.42516,12.62312,19.15853,1
|
||||
True,False,True,summer,14,4.46951,33.59537,47.343,1
|
||||
True,True,False,autumn,11,6.49386,0.64398,1.0515,1
|
||||
False,False,False,winter,10,1.9354,22.80015,26.01165,1
|
||||
True,False,False,summer,7,3.55716,1.91094,41.82462,1
|
||||
False,True,True,winter,8,9.01072,15.89341,9.10422,2
|
||||
False,True,True,spring,4,4.64513,10.39766,7.57955,2
|
||||
True,False,False,autumn,2,4.11019,45.85039,30.34183,1
|
||||
True,True,True,spring,8,7.09003,6.92577,24.77301,3
|
||||
True,True,False,spring,6,4.12955,47.91516,12.84722,1
|
||||
True,True,True,spring,10,2.70845,1.0623,42.6941,3
|
||||
True,True,True,spring,15,4.34025,6.89381,3.03923,2
|
||||
True,False,False,autumn,5,7.24464,31.34759,6.44719,1
|
||||
True,True,True,summer,6,3.8924,18.08964,18.77435,1
|
||||
False,False,True,spring,13,4.86962,48.62578,6.05301,2
|
||||
False,True,False,spring,11,1.60186,31.34926,14.41007,2
|
||||
False,True,False,autumn,2,4.19839,19.58116,28.63919,1
|
||||
False,True,True,autumn,6,1.50346,25.88282,24.97486,1
|
||||
False,True,False,spring,7,2.67431,17.05587,24.7939,1
|
||||
True,True,True,spring,7,1.72828,38.17304,24.3685,1
|
||||
False,True,True,summer,12,7.55322,26.52797,42.24754,3
|
||||
False,True,False,summer,5,8.74993,30.39317,4.5676,2
|
||||
False,True,False,summer,5,7.42862,48.73014,5.94891,2
|
||||
True,False,False,spring,4,9.3662,12.90556,41.31266,3
|
||||
False,True,False,autumn,8,4.72785,0.1623,19.48377,1
|
||||
False,False,False,winter,14,6.49349,29.52121,21.87192,1
|
||||
True,False,False,summer,14,1.57899,26.90783,33.03528,1
|
||||
False,True,False,summer,3,6.21725,3.60564,23.51978,1
|
||||
True,True,True,winter,4,4.18565,25.24209,11.02056,1
|
||||
False,False,True,autumn,8,6.5479,39.16107,4.75438,2
|
||||
False,False,False,summer,13,2.14609,39.97177,13.98651,1
|
||||
True,True,False,winter,9,7.43651,10.09353,15.70939,3
|
||||
False,False,True,autumn,5,7.85569,40.47073,49.75818,2
|
||||
True,False,True,summer,1,9.03492,23.44692,20.0026,3
|
||||
False,True,True,autumn,8,2.36724,42.81768,21.34668,2
|
||||
False,False,True,summer,15,6.8222,15.2733,15.14799,3
|
||||
True,False,True,summer,4,8.63882,41.36166,7.98981,2
|
||||
False,True,False,autumn,12,0.48943,8.67832,40.4952,1
|
||||
False,False,False,autumn,3,3.0489,14.81219,8.32707,1
|
||||
False,True,True,winter,6,0.41014,49.94757,12.61713,1
|
||||
True,False,True,winter,12,5.55017,0.98544,10.25287,1
|
||||
True,False,False,summer,11,9.92135,6.80759,48.0665,3
|
||||
False,True,True,winter,2,7.14394,11.41862,18.29288,2
|
||||
False,True,True,winter,10,1.39924,36.41807,42.95548,2
|
||||
False,True,False,summer,1,0.95193,46.53851,25.70391,1
|
||||
False,True,False,winter,4,1.44658,6.61497,31.58116,1
|
||||
False,True,False,autumn,10,7.9404,26.82316,49.5898,2
|
||||
True,False,False,spring,5,5.14951,32.36345,11.32114,1
|
||||
True,True,False,summer,5,7.55665,49.12578,29.32983,3
|
||||
True,False,True,autumn,3,3.80646,11.86722,35.43034,1
|
||||
False,False,False,winter,12,3.65822,0.14026,19.18031,1
|
||||
True,False,False,spring,8,8.58384,46.33595,11.52974,2
|
||||
True,False,False,summer,3,6.34127,22.66891,19.15813,1
|
||||
False,True,False,spring,13,7.86448,8.85557,40.03913,3
|
||||
True,True,False,spring,13,8.89316,49.89548,21.04525,2
|
||||
True,True,False,autumn,9,0.91339,36.35922,16.09576,1
|
||||
False,False,False,summer,3,7.36268,28.50462,29.52973,1
|
||||
True,True,True,spring,3,6.1319,37.71758,33.50616,1
|
||||
False,True,True,spring,0,0.77228,42.89976,19.19004,1
|
||||
True,False,True,autumn,3,7.73055,20.87865,37.18248,1
|
||||
False,False,False,summer,1,8.30392,34.47046,8.77926,2
|
||||
True,True,False,summer,8,2.96562,17.50839,23.22476,1
|
||||
True,True,True,winter,4,2.27279,20.58575,32.17293,1
|
||||
True,False,True,spring,7,6.14608,34.46015,17.22245,1
|
||||
False,False,True,winter,1,8.32044,12.09058,37.28732,3
|
||||
False,True,False,spring,14,9.56618,48.49473,46.37651,2
|
||||
True,False,True,spring,10,9.33146,47.99213,35.92519,2
|
||||
False,True,False,spring,6,0.47396,37.45415,36.87019,1
|
||||
True,False,False,summer,12,7.61463,4.36339,36.07375,3
|
||||
True,True,True,autumn,3,6.42039,4.90383,43.29857,3
|
||||
False,True,False,winter,13,6.89007,43.09184,3.04284,2
|
||||
True,False,True,winter,1,6.56604,19.04681,27.58314,2
|
||||
True,False,True,spring,3,1.96784,2.18597,34.02966,1
|
||||
False,False,False,spring,0,3.76673,1.64674,34.50649,1
|
||||
False,False,True,summer,2,0.05382,10.48896,24.03557,1
|
||||
True,False,True,spring,14,5.12387,44.44585,8.35502,3
|
||||
True,True,False,autumn,10,4.90335,43.27857,27.22901,1
|
||||
True,False,False,winter,11,5.89082,28.91495,15.58095,1
|
||||
True,False,True,autumn,3,7.39589,21.53402,44.50694,3
|
||||
True,False,True,autumn,3,7.39589,21.53402,0.00000,2
|
||||
True,False,False,summer,12,5.68671,49.18777,22.53807,3
|
||||
False,False,False,winter,0,0.86765,41.28704,33.77284,1
|
||||
False,False,True,summer,10,5.97643,36.23669,48.32615,2
|
||||
False,True,True,autumn,7,1.76947,38.34692,13.28679,1
|
||||
True,True,True,summer,13,8.63622,16.14861,44.91355,3
|
||||
True,False,False,winter,11,8.48481,37.52722,47.76888,2
|
||||
True,True,True,summer,12,7.65812,4.16785,34.57922,3
|
||||
False,False,True,winter,7,8.44897,42.99815,44.66558,2
|
||||
False,False,False,winter,7,0.53067,13.47003,18.45329,1
|
||||
False,False,False,winter,14,3.24747,9.51144,6.62824,1
|
||||
True,True,False,spring,12,5.19071,47.53107,34.68942,2
|
||||
True,False,False,summer,9,6.9442,46.79146,13.92798,2
|
||||
True,False,False,autumn,1,3.09242,18.02023,11.03004,1
|
||||
True,True,True,spring,3,0.19271,1.00203,1.16671,1
|
||||
False,True,True,winter,5,9.00758,37.95091,11.54697,2
|
||||
True,False,True,spring,9,6.11904,37.42698,4.82627,2
|
||||
False,False,True,autumn,9,6.29507,22.99044,15.46992,2
|
||||
False,False,False,winter,13,5.4099,11.75134,6.91861,1
|
||||
False,False,False,winter,5,9.92035,21.82547,10.2415,2
|
||||
False,True,False,winter,10,6.06913,1.46795,12.76663,1
|
||||
True,False,True,spring,5,8.1218,37.03643,32.04156,3
|
||||
True,False,False,autumn,11,0.48844,39.36689,0.03464,1
|
||||
False,True,True,summer,6,1.72816,26.85829,16.53262,1
|
||||
False,False,False,spring,5,6.04025,29.55673,18.85232,2
|
||||
False,True,True,winter,2,1.75157,0.6601,49.91163,1
|
||||
False,True,True,winter,9,6.75125,15.22221,6.72688,2
|
||||
False,True,True,autumn,9,6.72535,24.07403,33.94074,2
|
||||
False,False,False,winter,14,0.02843,48.49973,15.81701,1
|
||||
False,False,True,autumn,15,1.07944,45.94025,4.05257,1
|
||||
False,False,True,winter,12,7.26288,15.82501,22.56163,2
|
||||
True,True,True,winter,11,8.50892,23.89966,46.14267,3
|
||||
True,False,True,autumn,11,8.10923,24.31448,6.70919,2
|
||||
True,True,False,summer,11,4.65313,3.44791,3.96313,3
|
||||
True,False,True,summer,2,2.56716,10.85536,49.88738,1
|
||||
False,False,True,autumn,4,8.19265,5.43942,48.74041,3
|
||||
False,True,False,autumn,5,5.6574,9.75738,25.96888,3
|
||||
False,True,False,autumn,5,5.6574,9.75738,0.00000,2
|
||||
False,True,False,winter,14,4.87066,33.40134,18.98246,2
|
||||
True,True,True,winter,6,8.2623,37.47298,33.76759,2
|
||||
True,True,True,spring,10,2.20409,13.6178,5.80078,2
|
||||
True,False,True,autumn,7,9.06057,37.8724,23.62209,2
|
||||
False,False,True,autumn,3,6.69861,37.07336,16.87187,2
|
||||
False,False,True,autumn,3,6.69861,0.00000,16.87187,3
|
||||
True,False,True,autumn,13,4.96475,46.87852,3.1412,1
|
||||
True,False,True,autumn,9,2.65212,19.06994,37.33364,1
|
||||
True,True,False,summer,15,3.47148,35.84529,0.00000,1
|
||||
False,True,True,summer,8,1.51025,9.44246,19.05913,1
|
||||
False,False,True,autumn,6,6.48485,45.61986,15.91179,2
|
||||
False,False,False,spring,2,8.98075,39.32941,42.47669,2
|
||||
False,True,True,winter,5,8.37177,12.99299,42.31566,3
|
||||
True,True,True,autumn,6,3.38746,48.86975,49.62605,1
|
||||
False,True,True,summer,7,7.09358,22.83074,38.5172,2
|
||||
False,False,True,spring,9,1.00148,11.16064,0.52706,1
|
||||
False,False,True,winter,1,6.08476,37.67744,4.49812,2
|
||||
False,True,False,spring,5,4.5182,32.48803,33.44274,1
|
||||
True,True,True,summer,8,6.11265,30.32015,46.47287,3
|
||||
False,True,True,winter,4,8.50937,22.72015,0.00000,2
|
||||
True,False,True,summer,4,7.23924,39.09963,42.82872,3
|
||||
False,False,True,summer,5,1.28353,7.18667,38.93923,1
|
||||
False,True,False,spring,3,4.50329,22.95269,0.41795,1
|
||||
True,True,True,summer,1,0.47824,14.79432,24.64273,1
|
||||
False,True,False,spring,10,8.43205,19.1333,20.95803,2
|
||||
False,True,False,spring,6,9.94659,18.83814,39.26147,2
|
||||
False,True,False,spring,3,3.68802,1.58951,26.4255,1
|
||||
False,False,True,autumn,8,4.79336,22.56564,4.95207,2
|
||||
False,True,True,spring,10,1.63541,0.00000,31.82704,1
|
||||
False,True,False,spring,2,1.2274,47.87731,32.98744,1
|
||||
True,True,False,winter,11,7.31457,26.08142,16.5835,2
|
||||
False,True,True,summer,2,4.90627,19.73976,49.56272,3
|
||||
True,True,False,winter,8,3.02707,35.9547,29.52088,1
|
||||
True,True,True,summer,7,5.02577,5.37674,16.61368,3
|
||||
False,False,True,spring,8,9.58805,8.12549,0.00000,2
|
||||
False,True,True,summer,6,2.08786,37.11126,36.15777,3
|
||||
True,True,False,spring,7,8.11839,12.2032,8.26737,2
|
||||
True,False,True,summer,7,4.08923,20.77025,11.25944,1
|
||||
False,False,True,winter,4,4.85557,0.00000,39.4493,2
|
||||
False,False,False,summer,14,9.12718,41.84025,49.51895,2
|
||||
True,True,True,summer,15,9.4014,34.10345,26.84361,3
|
||||
False,True,False,spring,14,8.61728,28.58017,39.3705,2
|
||||
False,True,False,winter,8,7.12808,12.04193,43.86622,2
|
||||
True,False,True,winter,1,9.50102,43.46168,28.81571,2
|
||||
True,True,False,spring,5,1.35366,6.95688,33.37058,1
|
||||
False,False,True,autumn,11,7.61014,11.10761,41.58039,2
|
||||
False,True,True,summer,2,6.86814,37.72905,14.64706,3
|
||||
True,False,False,winter,1,8.12812,22.55081,9.43532,2
|
||||
True,True,True,winter,10,4.18282,27.82423,30.42216,1
|
||||
False,False,False,summer,7,2.52646,3.74242,10.61286,1
|
||||
False,False,True,spring,13,3.15065,19.01632,34.56097,2
|
||||
True,True,False,summer,3,0.18108,46.67684,46.76693,1
|
||||
True,True,True,spring,0,1.50217,5.27541,16.18378,1
|
||||
False,True,True,summer,5,3.71758,11.15496,12.57224,3
|
||||
False,True,False,summer,6,9.92613,8.59078,21.32207,3
|
||||
True,False,False,winter,11,0.1261,2.42716,17.23296,1
|
||||
True,False,True,summer,14,6.90049,10.76539,3.92394,3
|
||||
False,True,True,autumn,15,1.76164,35.60051,2.5168,2
|
||||
False,False,True,spring,11,2.39225,36.14198,9.13906,3
|
||||
True,True,False,summer,2,4.04026,0.00000,12.47216,1
|
||||
True,True,False,spring,13,3.32803,7.59913,1.89442,3
|
||||
True,False,True,spring,1,5.15927,44.02139,4.03454,1
|
||||
True,True,True,autumn,13,5.52565,7.75133,38.62709,3
|
||||
True,True,False,spring,3,8.44216,30.01593,12.45777,3
|
||||
False,False,True,summer,13,2.88557,5.18905,5.87065,3
|
||||
True,True,True,spring,11,2.45261,7.22671,49.68806,3
|
||||
True,True,True,winter,4,8.55814,3.29899,32.82852,2
|
||||
False,False,True,summer,4,9.85169,47.62867,17.3155,3
|
||||
False,False,True,winter,2,5.30151,26.50068,48.79306,2
|
||||
False,False,False,autumn,9,7.59806,0.00000,36.92142,2
|
||||
False,True,True,autumn,1,9.28424,17.58014,28.42461,2
|
||||
True,False,True,summer,14,7.82306,35.29264,46.36975,3
|
||||
False,False,True,winter,2,1.10909,46.37088,40.88245,1
|
||||
True,True,False,summer,1,7.71442,43.2301,27.42849,3
|
||||
False,True,True,summer,6,1.21255,3.7357,4.31858,1
|
||||
True,True,True,winter,8,9.53076,12.54774,17.63524,2
|
||||
True,True,True,autumn,3,8.47955,19.04656,3.62988,2
|
||||
True,False,True,winter,3,2.58264,28.29242,0.00000,1
|
||||
True,False,False,autumn,5,6.83145,0.00000,15.88102,1
|
||||
True,False,False,summer,10,3.24742,16.50963,26.24036,1
|
||||
False,False,False,summer,8,8.66174,49.55046,33.2433,2
|
||||
True,False,True,winter,7,1.40722,4.06585,2.57929,1
|
||||
False,True,False,winter,12,4.483,2.42211,20.55941,2
|
||||
False,False,True,spring,12,2.98512,30.55243,5.53733,3
|
||||
False,False,True,autumn,6,0.84086,33.57311,32.42908,1
|
||||
False,True,True,winter,12,1.07916,8.27438,7.9284,1
|
||||
False,False,True,spring,12,3.17402,46.59657,14.21739,3
|
||||
False,True,True,winter,11,7.09559,14.18261,43.41709,2
|
||||
False,False,True,autumn,3,0.53006,21.37664,17.14295,1
|
||||
False,False,False,autumn,14,4.67143,4.11788,0.04226,1
|
||||
True,False,True,winter,12,3.48493,35.24303,0.00000,1
|
||||
True,True,True,spring,9,5.1789,0.97673,8.31413,2
|
||||
False,False,False,spring,5,1.50319,28.57762,27.80054,1
|
||||
True,True,True,autumn,10,9.23444,43.51842,19.90954,2
|
||||
False,False,False,autumn,9,3.84582,40.34953,9.01663,1
|
||||
True,True,False,winter,5,3.90587,32.97826,0.67046,1
|
||||
True,True,True,autumn,2,9.19994,0.00000,34.36662,3
|
||||
False,True,True,summer,6,5.614,29.08038,0.00000,2
|
||||
True,True,True,autumn,2,2.15339,6.36751,6.45082,1
|
||||
True,False,True,spring,1,9.19416,32.05433,8.27667,2
|
||||
True,False,True,autumn,0,8.12282,48.68677,8.38304,2
|
||||
False,True,True,spring,12,3.26729,29.61584,1.69993,2
|
||||
True,False,True,summer,8,1.99886,31.26437,3.51834,1
|
||||
False,False,True,summer,7,7.41314,44.88982,34.46453,2
|
||||
True,False,True,summer,0,7.24464,8.85289,34.29828,3
|
||||
False,True,False,summer,8,2.38628,21.76861,47.20283,3
|
||||
True,True,True,autumn,3,7.12112,12.08359,41.06062,3
|
||||
True,False,False,winter,5,6.74504,47.09367,1.97357,2
|
||||
False,False,False,summer,8,1.23539,35.47945,7.67276,1
|
||||
True,False,False,spring,11,7.91742,34.52557,30.96412,3
|
||||
False,True,True,winter,14,5.91181,7.53226,16.37669,3
|
||||
False,True,True,spring,13,6.07261,47.43572,15.83885,2
|
||||
True,True,True,autumn,2,9.22518,31.25996,28.06488,3
|
||||
False,True,True,summer,3,8.47609,0.23934,31.25786,3
|
||||
False,True,False,autumn,6,0.97126,13.65648,25.59887,1
|
||||
True,False,False,spring,14,9.29029,46.83676,12.58912,2
|
||||
False,False,False,winter,14,0.14092,4.6673,20.3859,1
|
||||
True,False,True,autumn,2,3.52708,37.61372,32.83573,1
|
||||
True,True,True,winter,1,4.37134,43.19138,22.04785,1
|
||||
True,False,True,summer,9,1.1614,10.9739,42.3009,1
|
||||
False,False,False,winter,9,7.27324,29.74731,47.17759,2
|
||||
False,True,True,winter,9,3.17153,35.14715,21.37868,2
|
||||
False,True,False,autumn,0,2.37863,20.35733,46.96943,1
|
||||
False,False,True,autumn,4,0.70656,8.70201,5.26527,1
|
||||
True,True,True,winter,1,8.23562,36.01552,25.03969,2
|
||||
True,True,False,winter,3,6.65062,6.75622,24.91086,3
|
||||
False,False,False,spring,10,2.30179,19.62758,25.57147,1
|
||||
True,True,False,autumn,10,6.60812,6.61336,12.39931,3
|
||||
False,False,True,summer,3,8.9948,47.39225,18.11157,2
|
||||
True,False,True,autumn,5,6.69302,42.62701,13.01677,2
|
||||
False,False,False,spring,14,8.53868,33.42545,2.43572,2
|
||||
False,True,True,autumn,10,4.46205,10.37542,39.58137,3
|
||||
True,True,False,spring,14,5.34262,15.45545,21.48404,3
|
||||
True,False,False,winter,9,7.02885,4.88308,27.56619,3
|
||||
False,False,False,autumn,13,3.55279,0.17091,5.43831,1
|
||||
True,True,True,autumn,1,9.98637,27.57982,15.82173,2
|
||||
False,True,True,summer,9,8.25408,13.10493,27.07596,3
|
||||
False,False,False,spring,15,1.9089,33.25115,44.57492,1
|
||||
True,False,False,autumn,12,6.65534,38.00972,20.31047,2
|
||||
False,True,True,autumn,1,0.01592,6.24929,15.51308,1
|
||||
False,True,True,winter,13,1.24017,36.88006,16.50894,1
|
||||
False,True,True,winter,13,6.1878,15.18876,9.02381,2
|
||||
True,True,True,winter,5,5.45157,13.27868,39.39805,2
|
||||
True,False,True,spring,5,2.82881,28.62319,24.03077,1
|
||||
False,False,True,spring,2,4.8246,41.45269,48.89539,2
|
||||
True,False,False,spring,8,9.3343,39.02018,45.01066,3
|
||||
True,True,True,autumn,4,1.8456,2.94366,37.44996,1
|
||||
False,True,True,summer,14,0.95333,4.57964,26.37633,1
|
||||
False,False,True,autumn,13,9.84087,24.03819,41.72097,2
|
||||
True,False,False,autumn,9,3.70617,32.70115,1.69105,1
|
||||
True,True,True,spring,12,6.77783,6.67976,20.46179,3
|
||||
False,False,True,summer,15,7.15829,31.24546,10.37666,3
|
||||
False,True,True,summer,1,2.28393,18.13299,34.38756,3
|
||||
True,False,True,autumn,7,3.96302,39.84093,47.0172,1
|
||||
True,False,False,summer,1,0.65085,20.20581,14.96995,1
|
||||
True,False,False,winter,2,9.24331,26.34543,30.5147,2
|
||||
True,False,False,summer,3,2.86309,15.56342,1.04324,1
|
||||
True,True,True,autumn,8,5.71809,24.41045,48.78273,2
|
||||
True,True,True,autumn,8,5.71809,24.41045,48.78273,2
|
||||
True,True,True,winter,8,5.71809,0.99999,48.78273,3
|
||||
True,True,True,winter,8,5.71809,1.98675,48.79993,3
|
||||
True,True,False,winter,8,7.71809,1.02345,38.78273,3
|
||||
True,False,False,summer,1,4.03947,33.84073,6.48891,1
|
||||
True,False,False,winter,4,2.46471,24.07929,17.77792,1
|
||||
False,False,False,winter,9,3.66415,23.68306,24.43865,1
|
||||
True,True,True,autumn,8,5.71809,24.41045,48.78273,2
|
||||
False,True,True,spring,3,5.3009,34.83862,6.75862,2
|
||||
True,False,True,winter,8,6.23275,8.1183,19.6922,3
|
||||
False,True,True,autumn,2,4.21016,11.24334,34.98395,3
|
||||
True,True,False,autumn,0,2.79424,13.25106,5.69617,1
|
||||
True,True,False,winter,15,2.43843,14.61703,49.57393,2
|
||||
True,True,True,summer,8,2.28654,20.9895,5.64007,1
|
||||
False,False,False,autumn,1,2.5607,26.85209,47.10784,1
|
||||
True,True,True,winter,14,1.56638,18.02703,7.05011,1
|
||||
False,False,False,winter,13,3.86632,28.9884,20.1928,1
|
||||
True,False,False,summer,13,6.37654,34.3833,34.53892,3
|
||||
True,False,False,summer,13,6.37654,34.3833,34.53892,3
|
||||
True,False,False,spring,11,8.35634,0.00000,34.53892,3
|
||||
True,False,True,summer,13,9.37654,34.3833,0.00000,2
|
||||
True,False,False,winter,13,7.77754,34.3833,0.00000,2
|
||||
True,True,True,summer,5,8.10422,7.6617,23.41017,3
|
|
@ -1,48 +0,0 @@
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier, plot_tree
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
import matplotlib.pyplot as plt
|
||||
headers = ['adult','active_time','ill','season','guests','hunger','wet_food','dry_food']
|
||||
# Wczytanie danych
|
||||
data = pd.read_csv('dane.csv', header=0)
|
||||
X = data[headers]
|
||||
Y = data['decision']
|
||||
X = pd.get_dummies(data=X, columns=['season'])
|
||||
clf = DecisionTreeClassifier(max_depth=6)
|
||||
X1, X2, Y1, Y2 = train_test_split(X, Y, train_size=0.8)
|
||||
clf = clf.fit(X1, Y1)
|
||||
pred = clf.predict(X2)
|
||||
accuracy = accuracy_score(Y2, pred)
|
||||
print("Dokładność:", accuracy)
|
||||
|
||||
|
||||
|
||||
#zapisanie drzewa do pliku
|
||||
plt.figure(figsize=(50,30))
|
||||
plot_tree(clf, filled=True, feature_names=X.columns.tolist(), class_names=['nie karmi', 'karmi mokrą karmą', 'karmi suchą karmą'])
|
||||
plt.savefig('tree.png')
|
||||
# dane do decyzji
|
||||
def feed_decision(adult,active_time,ill,season,guests,hunger,dry_food,wet_food):
|
||||
|
||||
X_new = pd.DataFrame({
|
||||
'adult': [adult],
|
||||
'active_time': [active_time],
|
||||
'ill': [ill],
|
||||
'season': [season],
|
||||
'guests':[guests],
|
||||
'hunger': [hunger],
|
||||
'wet_food': [wet_food],
|
||||
'dry_food': [dry_food]
|
||||
})
|
||||
X_new = pd.get_dummies(X_new)
|
||||
missing_columns = set(X.columns) - set(X_new)
|
||||
for col in missing_columns:
|
||||
X_new[col] = False
|
||||
X_new = X_new.reindex(columns=X.columns, fill_value=0)
|
||||
print("Atrybuty zwierzęcia:", adult,active_time,ill,season,guests,hunger,wet_food,dry_food)
|
||||
return (clf.predict(X_new))
|
||||
|
||||
|
||||
|
||||
|
22
draw.py
@ -1,22 +0,0 @@
|
||||
import pygame
|
||||
|
||||
def draw_goal(const, goal):
|
||||
x, y = goal
|
||||
rect = (x * const.GRID_SIZE, y * const.GRID_SIZE, const.GRID_SIZE, const.GRID_SIZE)
|
||||
pygame.draw.rect(const.screen, const.RED, rect)
|
||||
pygame.display.flip()
|
||||
pygame.time.delay(2000)
|
||||
|
||||
def draw_grid(const):
|
||||
for y in range(0, const.GRID_HEIGHT * const.GRID_SIZE, const.GRID_SIZE):
|
||||
for x in range(0, const.GRID_WIDTH * const.GRID_SIZE, const.GRID_SIZE):
|
||||
rect = pygame.Rect(x, y, const.GRID_SIZE, const.GRID_SIZE)
|
||||
pygame.draw.rect(const.screen, const.BLACK, rect, 1)
|
||||
|
||||
def draw_house(const):
|
||||
X = 2
|
||||
Y = 0
|
||||
image_path = 'images/house.png'
|
||||
image_surface = pygame.image.load(image_path) # Wczytanie obrazka do obiektu Surface
|
||||
scaled_image = pygame.transform.scale(image_surface, (const.GRID_SIZE * 2, const.GRID_SIZE * 2))
|
||||
const.screen.blit(scaled_image, (X * const.GRID_SIZE, Y * const.GRID_SIZE))
|
@ -2,13 +2,13 @@ from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Elephant(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Elephant_image = pygame.image.load('images/elephant.png')
|
||||
name = 'elephant'
|
||||
image_path = self.choose_picture(name)
|
||||
environment = "hot"
|
||||
activity = 'diurnal'
|
||||
ill = self.is_ill()
|
||||
if adult:
|
||||
elephant_food = 'leavs'
|
||||
food_image = 'images/leaves.png'
|
||||
@ -16,16 +16,22 @@ class Elephant(Animal):
|
||||
elephant_food = 'milk'
|
||||
food_image = 'images/milk.png'
|
||||
|
||||
super().__init__(x, y,name, image_path, food_image,elephant_food, environment, activity, ill, adult)
|
||||
super().__init__(x, y,name, Elephant_image, food_image,elephant_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def getting_hungry(self, const):
|
||||
|
||||
|
||||
def feed(self):
|
||||
self.getting_hungry()
|
||||
if self._feed < 0.3:
|
||||
return 'False'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
|
||||
def getting_hungry(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / (90)
|
||||
self._starttime = checktime
|
||||
|
||||
if not const.IS_NIGHT and self._feed < 10:
|
||||
minutes_passed = delta.total_seconds() / 60
|
||||
self._feed += minutes_passed
|
||||
self._feed = min(self._feed, 10)
|
||||
return self._feed
|
||||
self._starttime = checktime
|
101
enclosure.py
@ -1,74 +1,79 @@
|
||||
import pygame
|
||||
|
||||
class Enclosure:
|
||||
def __init__(self, x1, y1, x2, y2, gate1, gate2, type, imageH, imageV, imageGate):
|
||||
def __init__(self, x1, y1, x2, y2, gate, type, imageH, imageV, imageGate):
|
||||
self.x1 = x1 - 1
|
||||
self.y1 = y1 - 1
|
||||
# (x1,y1) - wierzchołek przekątnej
|
||||
#(x1,y1) - wierzchołek przekątnej
|
||||
self.x2 = x2 - 1
|
||||
self.y2 = y2 - 1
|
||||
# (x2,y2) - 2 wierzchołek przekątnej
|
||||
self.gate1 = gate1
|
||||
self.gate2 = gate2
|
||||
#(x2,y2) - 2 wierzchołek przekątnej
|
||||
self.gate = gate
|
||||
self.type = type
|
||||
self.imageH = imageH
|
||||
self.imageV = imageV
|
||||
self.imageGate = imageGate
|
||||
self.animals = set()
|
||||
|
||||
def gatebuild(self, screen, grid_size):
|
||||
self.imageGate = pygame.transform.scale(self.imageGate, (grid_size, grid_size))
|
||||
gate_x1, gate_y1 = self.gate1
|
||||
gate_x2, gate_y2 = self.gate2
|
||||
gate_x1 -= 1
|
||||
gate_y1 -= 1
|
||||
gate_x2 -= 1
|
||||
gate_y2 -= 1
|
||||
rect1 = pygame.Rect(gate_x1 * grid_size, gate_y1 * grid_size, grid_size, grid_size)
|
||||
rect2 = pygame.Rect(gate_x2 * grid_size, gate_y2 * grid_size, grid_size, grid_size)
|
||||
screen.blit(self.imageGate, (gate_x1 * grid_size, gate_y1 * grid_size))
|
||||
screen.blit(self.imageGate, (gate_x2 * grid_size, gate_y2 * grid_size))
|
||||
gate_x, gate_y = self.gate
|
||||
gate_x-=1
|
||||
gate_y-=1
|
||||
rect = pygame.Rect(gate_x * grid_size, gate_y * grid_size, grid_size, grid_size)
|
||||
pygame.draw.rect(screen, (0, 0, 0), rect) # Fill the area with
|
||||
screen.blit(self.imageGate, (gate_x * grid_size, gate_y * grid_size))
|
||||
|
||||
def draw(self, screen, grid_size):
|
||||
def gateopen(self, blocked):
|
||||
gate_x, gate_y = self.gate
|
||||
gate_x -= 1
|
||||
gate_y -= 1
|
||||
if (gate_x, gate_y) in blocked:
|
||||
blocked.remove((gate_x, gate_y))
|
||||
|
||||
|
||||
|
||||
def draw(self,screen, grid_size , blocked_fields):
|
||||
self.imageH = pygame.transform.scale(self.imageH, (grid_size, grid_size))
|
||||
self.imageV = pygame.transform.scale(self.imageV, (grid_size, grid_size))
|
||||
gate_x1, gate_y1 = self.gate1
|
||||
gate_x2, gate_y2 = self.gate2
|
||||
gate_x1 -= 1
|
||||
gate_y1 -= 1
|
||||
gate_x2 -= 1
|
||||
gate_y2 -= 1
|
||||
if self.x1 < self.x2:
|
||||
for i in range(self.x1, self.x2 + 1):
|
||||
if (i, self.y1) != (gate_x1, gate_y1) and (i, self.y1) != (gate_x2, gate_y2):
|
||||
for i in range(self.x1, self.x2+1):
|
||||
screen.blit(self.imageH, (i * grid_size, self.y1 * grid_size))
|
||||
if (i, self.y2) != (gate_x1, gate_y1) and (i, self.y2) != (gate_x2, gate_y2):
|
||||
blocked_fields.add((i, self.y1))
|
||||
screen.blit(self.imageH, (i * grid_size, self.y2 * grid_size))
|
||||
for j in range(self.y1, self.y2 + 1):
|
||||
if (self.x1, j) != (gate_x1, gate_y1) and (self.x1, j) != (gate_x2, gate_y2):
|
||||
screen.blit(self.imageV, (self.x1 * grid_size, j * grid_size))
|
||||
if (self.x2, j) != (gate_x1, gate_y1) and (self.x2, j) != (gate_x2, gate_y2):
|
||||
screen.blit(self.imageV, (self.x2 * grid_size, j * grid_size))
|
||||
blocked_fields.add((i, self.y2))
|
||||
if self.y1 < self.y2:
|
||||
for j in range(self.y1, self.y2+1):
|
||||
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x1, j))
|
||||
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x2, j))
|
||||
if self.y1 > self.y2:
|
||||
for j in range(self.y2, self.y1+1):
|
||||
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x1, j))
|
||||
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x2, j))
|
||||
if self.x1 > self.x2:
|
||||
for i in range(self.x2, self.x1+1):
|
||||
screen.blit(self.imageH, (i * grid_size, self.y1 * grid_size))
|
||||
blocked_fields.add((i, self.y1))
|
||||
screen.blit(self.imageH, (i * grid_size, self.y2 * grid_size))
|
||||
blocked_fields.add((i, self.y2))
|
||||
if self.y1 < self.y2:
|
||||
for j in range(self.y1, self.y2+1):
|
||||
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x1, j))
|
||||
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x2, j))
|
||||
if self.y1 > self.y2:
|
||||
for j in range(self.y2, self.y1+1):
|
||||
screen.blit(self.imageH, (self.x1 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x1, j))
|
||||
screen.blit(self.imageH, (self.x2 * grid_size, j * grid_size))
|
||||
blocked_fields.add((self.x2, j))
|
||||
|
||||
def create_enclosures():
|
||||
fenceH = pygame.image.load('images/fenceHor.png')
|
||||
fenceV = pygame.image.load('images/fenceVer.png')
|
||||
gate = pygame.image.load('images/gate.png')
|
||||
|
||||
en1 = Enclosure(0, 5, 9, 11, (9, 6), (4, 11), "hot", fenceH, fenceV, gate) # Lewa klatka
|
||||
en2 = Enclosure(4, 13, 28, 16, (12, 13), (20, 13), 'cold', fenceH, fenceV, gate) # Dolna klatka
|
||||
en3 = Enclosure(19, 5, 31, 11, (23, 5), (25, 11), 'hot', fenceH, fenceV, gate) # Prawa klatka
|
||||
en4 = Enclosure(11, 5, 16, 11, (12, 5), (16, 8), 'cold', fenceH, fenceV, gate) # Środkowa klatka
|
||||
en5 = Enclosure(13, 0, 29, 3, (16, 3), (27, 3), 'medium', fenceH, fenceV, gate) # Górna klatka
|
||||
|
||||
Enclosures = [en1, en2, en3, en4, en5]
|
||||
|
||||
return Enclosures
|
||||
|
||||
def draw_enclosures(Enclosures, const):
|
||||
for enclosure in Enclosures:
|
||||
enclosure.draw(const.screen, const.GRID_SIZE)
|
||||
|
||||
def draw_gates(Enclosures, const):
|
||||
for enclosure in Enclosures:
|
||||
enclosure.gatebuild(const.screen, const.GRID_SIZE)
|
148
genetics.py
@ -1,148 +0,0 @@
|
||||
from state_space_search import graphsearch, generate_cost_map
|
||||
import random
|
||||
|
||||
# Parametry algorytmu genetycznego
|
||||
POPULATION_SIZE = 700
|
||||
MUTATION_RATE = 0.01
|
||||
NUM_GENERATIONS = 600
|
||||
|
||||
# Generowanie początkowej populacji
|
||||
def generate_individual(animals):
|
||||
return random.sample(animals, len(animals))
|
||||
|
||||
def generate_population(animals, size):
|
||||
return [generate_individual(animals) for _ in range(size)]
|
||||
|
||||
# Obliczanie odległości między zwierzetami
|
||||
def calculate_distance(animal1, animal2):
|
||||
x1, y1 = animal1
|
||||
x2, y2 = animal2
|
||||
return abs(x1 - x2) + abs(y1 - y2) # Odległość Manhattana
|
||||
|
||||
def calculate_total_distance(animals):
|
||||
total_distance = 0
|
||||
for i in range(len(animals) - 1):
|
||||
total_distance += calculate_distance(animals[i], animals[i+1])
|
||||
total_distance += calculate_distance(animals[-1], animals[0]) # Zamknięcie cyklu
|
||||
return total_distance
|
||||
|
||||
# Selekcja rodziców za pomocą metody ruletki
|
||||
def select_parents(population, num_parents):
|
||||
fitness_scores = [1 / calculate_total_distance(individual) for individual in population]
|
||||
total_fitness = sum(fitness_scores)
|
||||
selection_probs = [fitness / total_fitness for fitness in fitness_scores]
|
||||
|
||||
parents = random.choices(population, weights=selection_probs, k=num_parents)
|
||||
return parents
|
||||
|
||||
# Krzyżowanie rodziców (OX,Davis)
|
||||
def crossover(parent1, parent2):
|
||||
child1 = [None] * len(parent1)
|
||||
child2 = [None] * len(parent1)
|
||||
start_index = random.randint(0, len(parent1) - 1)
|
||||
end_index = random.randint(start_index, len(parent1) - 1)
|
||||
child1[start_index:end_index+1] = parent1[start_index:end_index+1]
|
||||
child2[start_index:end_index+1] = parent2[start_index:end_index+1]
|
||||
|
||||
# Uzupełnienie brakujących zwierząt z drugiego rodzica
|
||||
for i in range(len(parent1)):
|
||||
if parent2[i] not in child1:
|
||||
for j in range(len(parent2)):
|
||||
if child1[j] is None:
|
||||
child1[j] = parent2[i]
|
||||
break
|
||||
|
||||
for i in range(len(parent1)):
|
||||
if parent1[i] not in child2:
|
||||
for j in range(len(parent1)):
|
||||
if child2[j] is None:
|
||||
child2[j] = parent1[i]
|
||||
break
|
||||
|
||||
return child1, child2
|
||||
|
||||
# Mutacja: zamiana dwóch losowych zwierząt z prawdopodobieństwem MUTATION_RATE
|
||||
def mutate(individual):
|
||||
if random.random() < MUTATION_RATE:
|
||||
index1, index2 = random.sample(range(len(individual)), 2)
|
||||
individual[index1], individual[index2] = individual[index2], individual[index1]
|
||||
|
||||
# Algorytm genetyczny
|
||||
def genetic_algorithm(animals):
|
||||
population = generate_population(animals, POPULATION_SIZE)
|
||||
|
||||
for generation in range(NUM_GENERATIONS):
|
||||
# Selekcja rodziców
|
||||
parents = select_parents(population, POPULATION_SIZE // 2)
|
||||
|
||||
# Krzyżowanie i tworzenie nowej populacji
|
||||
next_generation = []
|
||||
for i in range(0, len(parents), 2):
|
||||
parent1 = parents[i]
|
||||
if i + 1 < len(parents):
|
||||
parent2 = parents[i + 1]
|
||||
else:
|
||||
parent2 = parents[0]
|
||||
child1, child2 = crossover(parent1, parent2)
|
||||
next_generation.extend([child1, child2])
|
||||
|
||||
# Mutacja nowej populacji
|
||||
for individual in next_generation:
|
||||
mutate(individual)
|
||||
|
||||
# Zastąpienie starej populacji nową
|
||||
population = next_generation
|
||||
|
||||
# Znalezienie najlepszego osobnika
|
||||
best_individual = min(population, key=calculate_total_distance)
|
||||
|
||||
return best_individual
|
||||
|
||||
# def calculate_distance(start, goal, max_x, max_y, obstacles, cost_map):
|
||||
# istate = (start[0], start[1], 'N') # Zakładamy, że zaczynamy od kierunku północnego
|
||||
# actions, cost = graphsearch(istate, goal, max_x, max_y, obstacles, cost_map)
|
||||
# return cost
|
||||
|
||||
# def calculate_total_distance(animals, max_x, max_y, obstacles, cost_map):
|
||||
# total_distance = 0
|
||||
# for i in range(len(animals) - 1):
|
||||
# total_distance += calculate_distance(animals[i], animals[i+1], max_x, max_y, obstacles, cost_map)
|
||||
# total_distance += calculate_distance(animals[-1], animals[0], max_x, max_y, obstacles, cost_map) # Zamknięcie cyklu
|
||||
# return total_distance
|
||||
|
||||
# # Selekcja rodziców za pomocą metody ruletki
|
||||
# def select_parents(population, num_parents, max_x, max_y, obstacles, cost_map):
|
||||
# fitness_scores = [1 / calculate_total_distance(individual, max_x, max_y, obstacles, cost_map) for individual in population]
|
||||
# total_fitness = sum(fitness_scores)
|
||||
# selection_probs = [fitness / total_fitness for fitness in fitness_scores]
|
||||
|
||||
# parents = random.choices(population, weights=selection_probs, k=num_parents)
|
||||
# return parents
|
||||
|
||||
|
||||
# def genetic_algorithm(animals, max_x, max_y, obstacles, cost_map):
|
||||
# population = generate_population(animals, POPULATION_SIZE)
|
||||
|
||||
# for generation in range(NUM_GENERATIONS):
|
||||
# # Selekcja rodziców
|
||||
# parents = select_parents(population, POPULATION_SIZE // 2, max_x, max_y, obstacles, cost_map)
|
||||
|
||||
# # Krzyżowanie i tworzenie nowej populacji
|
||||
# next_generation = []
|
||||
# for i in range(0, len(parents), 2):
|
||||
# parent1 = parents[i]
|
||||
# parent2 = parents[i + 1]
|
||||
# child1, child2 = crossover(parent1, parent2)
|
||||
# next_generation.extend([child1, child2])
|
||||
|
||||
# # Mutacja nowej populacji
|
||||
# for individual in next_generation:
|
||||
# mutate(individual)
|
||||
|
||||
# # Zastąpienie starej populacji nową
|
||||
# population = next_generation
|
||||
|
||||
# # Znalezienie najlepszego osobnika
|
||||
# best_individual = min(population, key=lambda individual: calculate_total_distance(individual, max_x, max_y, obstacles, cost_map))
|
||||
|
||||
# return best_individual
|
32
giraffe.py
Normal file
@ -0,0 +1,32 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Giraffe(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Giraffe_image = pygame.image.load('images/giraffe.png')
|
||||
name = 'giraffe'
|
||||
environment = "hot"
|
||||
food_image = 'images/leaves.png'
|
||||
giraffe_food = 'leaves'
|
||||
super().__init__(x, y,name, Giraffe_image, food_image,giraffe_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
|
||||
|
||||
def feed(self):
|
||||
self.getting_hungry()
|
||||
if self._feed < 0.8:
|
||||
return 'False'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
|
||||
def getting_hungry(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / 60
|
||||
self._feed += minutes_passed
|
||||
self._starttime = checktime
|
Before Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 8.2 KiB |
Before Width: | Height: | Size: 6.7 KiB |
Before Width: | Height: | Size: 7.0 KiB |
Before Width: | Height: | Size: 59 KiB |
BIN
images/avatar.png
Normal file
After Width: | Height: | Size: 248 KiB |
BIN
images/bat.png
Before Width: | Height: | Size: 458 KiB |
BIN
images/bat2.png
Before Width: | Height: | Size: 438 KiB |
BIN
images/bear.png
Before Width: | Height: | Size: 2.3 MiB After Width: | Height: | Size: 1.9 MiB |
BIN
images/bear2.png
Before Width: | Height: | Size: 366 KiB |
BIN
images/bush.png
Before Width: | Height: | Size: 222 KiB |
Before Width: | Height: | Size: 373 KiB After Width: | Height: | Size: 642 KiB |
Before Width: | Height: | Size: 294 KiB |
Before Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 63 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 70 KiB |
BIN
images/fish.png
Before Width: | Height: | Size: 601 KiB After Width: | Height: | Size: 934 KiB |
Before Width: | Height: | Size: 81 KiB |
Before Width: | Height: | Size: 161 KiB After Width: | Height: | Size: 256 KiB |
Before Width: | Height: | Size: 1.7 MiB |
Before Width: | Height: | Size: 80 KiB |
BIN
images/house.png
Before Width: | Height: | Size: 6.5 KiB |
BIN
images/ill.png
Before Width: | Height: | Size: 15 KiB |
BIN
images/meat.png
Before Width: | Height: | Size: 232 KiB After Width: | Height: | Size: 186 KiB |
BIN
images/milk.png
Before Width: | Height: | Size: 460 KiB After Width: | Height: | Size: 288 KiB |
BIN
images/owl.png
Before Width: | Height: | Size: 178 KiB |
BIN
images/owl2.png
Before Width: | Height: | Size: 1.5 MiB |
Before Width: | Height: | Size: 1.7 MiB After Width: | Height: | Size: 1.5 MiB |
Before Width: | Height: | Size: 268 KiB |
Before Width: | Height: | Size: 2.4 MiB After Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 176 KiB |
Before Width: | Height: | Size: 4.7 KiB |
Before Width: | Height: | Size: 222 KiB |
Before Width: | Height: | Size: 229 KiB |
Before Width: | Height: | Size: 203 KiB |
211
main.py
@ -1,158 +1,117 @@
|
||||
import random
|
||||
import pygame
|
||||
import sys
|
||||
|
||||
sys.path.append('./Animals')
|
||||
from animals import create_animals, draw_Animals
|
||||
from elephant import Elephant
|
||||
from giraffe import Giraffe
|
||||
from penguin import Penguin
|
||||
from parrot import Parrot
|
||||
from bear import Bear
|
||||
from agent import Agent
|
||||
from enclosure import create_enclosures, draw_enclosures, draw_gates
|
||||
from enclosure import Enclosure
|
||||
from spawner import Spawner
|
||||
from state_space_search import graphsearch, generate_cost_map
|
||||
from terrain_obstacle import create_obstacles, draw_Terrain_Obstacles
|
||||
from constants import Constants, init_pygame
|
||||
from draw import draw_goal, draw_grid, draw_house
|
||||
from season import draw_background
|
||||
from night import change_time
|
||||
from genetics import genetic_algorithm
|
||||
|
||||
const = Constants()
|
||||
init_pygame(const)
|
||||
BLACK = (0, 0, 0)
|
||||
|
||||
GRID_SIZE = 50
|
||||
GRID_WIDTH = 30
|
||||
GRID_HEIGHT = 15
|
||||
|
||||
pygame.init()
|
||||
|
||||
WINDOW_SIZE = (GRID_WIDTH * GRID_SIZE, GRID_HEIGHT * GRID_SIZE)
|
||||
screen = pygame.display.set_mode(WINDOW_SIZE)
|
||||
pygame.display.set_caption("Mini Zoo")
|
||||
|
||||
obstacles = set()
|
||||
animals_position = set()
|
||||
terrain_obstacles_position = set()
|
||||
|
||||
Animals = create_animals()
|
||||
Enclosures = create_enclosures()
|
||||
Terrain_Obstacles = create_obstacles()
|
||||
|
||||
background_image = pygame.image.load('images/tło.jpg')
|
||||
background_image = pygame.transform.scale(background_image, WINDOW_SIZE)
|
||||
fenceH = pygame.image.load('images/fenceHor.png')
|
||||
fenceV = pygame.image.load('images/fenceVer.png')
|
||||
gate = pygame.image.load('images/gate.png')
|
||||
|
||||
|
||||
fences = set()
|
||||
animals_position = set()
|
||||
|
||||
|
||||
|
||||
an1 = Parrot(16, 2)
|
||||
an2 = Penguin(8, 6)
|
||||
an3 = Bear(14, 9)
|
||||
old_an2 = Giraffe(18,4, adult=True)
|
||||
old_an1 = Elephant(4, 7, adult=True)
|
||||
an4 = Elephant(4,3)
|
||||
|
||||
Animals = [an1, an2, an3, an4, old_an1, old_an2]
|
||||
|
||||
en1 = Enclosure(1,5,9,11,(9,6),"medium", fenceH, fenceV, gate)
|
||||
en2 = Enclosure(29,3, 13,1,(16,3), 'medium', fenceH, fenceV, gate)
|
||||
en3 = Enclosure(11,5, 16,11, (12,5),'cold', fenceH, fenceV, gate)
|
||||
en4 = Enclosure(19,11, 30,5, (25,5),'hot', fenceH, fenceV, gate)
|
||||
en5 = Enclosure(4,13, 28,15, (16,13),'cold', fenceH, fenceV, gate)
|
||||
|
||||
|
||||
Enclosures = [en1, en2, en3, en4, en5]
|
||||
|
||||
|
||||
def draw_grid():
|
||||
for y in range(0, GRID_HEIGHT * GRID_SIZE, GRID_SIZE):
|
||||
for x in range(0, GRID_WIDTH * GRID_SIZE, GRID_SIZE):
|
||||
rect = pygame.Rect(x, y, GRID_SIZE, GRID_SIZE)
|
||||
pygame.draw.rect(screen, BLACK, rect, 1)
|
||||
|
||||
def draw_enclosures():
|
||||
for enclosure in Enclosures:
|
||||
enclosure.draw(screen, GRID_SIZE, fences)
|
||||
|
||||
def draw_gates():
|
||||
for enclosure in Enclosures:
|
||||
enclosure.gatebuild(screen, GRID_SIZE)
|
||||
|
||||
def opengates():
|
||||
for enclosure in Enclosures:
|
||||
enclosure.gateopen(fences)
|
||||
|
||||
def draw_Animals():
|
||||
for Animal in Animals:
|
||||
Animal.draw(screen, GRID_SIZE)
|
||||
if Animal.feed() == 'True':
|
||||
Animal.draw_exclamation(screen, GRID_SIZE, Animal.x, Animal.y)
|
||||
else:
|
||||
Animal.draw_food(screen,GRID_SIZE,Animal.x,Animal.y)
|
||||
|
||||
def spawn_all_animals():
|
||||
for Animal in Animals:
|
||||
spawner1 = Spawner(Animal)
|
||||
spawner1.spawn_animal(obstacles, animals_position, Enclosures)
|
||||
spawner1 = Spawner(Animal, Enclosures)
|
||||
spawner1.spawn_animal(fences, animals_position)
|
||||
|
||||
def spawn_obstacles():
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
spawner2 = Spawner(terrain_obstacle)
|
||||
spawner2.spawn_terrain_obstacles(obstacles, animals_position, terrain_obstacles_position, const.GRID_WIDTH, const.GRID_HEIGHT)
|
||||
|
||||
def generate_obstacles():
|
||||
for en in Enclosures:
|
||||
# Pobierz współrzędne bramy
|
||||
gate_x, gate_y = en.gate1
|
||||
gate_x -= 1
|
||||
gate_y -= 1
|
||||
|
||||
gate_x2, gate_y2 = en.gate2
|
||||
gate_x2 -= 1
|
||||
gate_y2 -= 1
|
||||
|
||||
# Dodaj lewy brzeg prostokąta
|
||||
for y in range(en.y1, en.y2 + 1):
|
||||
if (en.x1, y) != (gate_x, gate_y) and (en.x1, y) != (gate_x2, gate_y2):
|
||||
obstacles.add((en.x1, y))
|
||||
|
||||
# Dodaj prawy brzeg prostokąta
|
||||
for y in range(en.y1, en.y2 + 1):
|
||||
if (en.x2, y) != (gate_x, gate_y) and (en.x2, y) != (gate_x2, gate_y2):
|
||||
obstacles.add((en.x2, y))
|
||||
|
||||
# Dodaj górny brzeg prostokąta
|
||||
for x in range(en.x1+1, en.x2):
|
||||
if (x, en.y1) != (gate_x, gate_y) and (x, en.y1) != (gate_x2, gate_y2):
|
||||
obstacles.add((x, en.y1))
|
||||
|
||||
# Dodaj dolny brzeg prostokąta
|
||||
for x in range(en.x1+1, en.x2):
|
||||
if (x, en.y2) != (gate_x, gate_y) and (x, en.y2) != (gate_x2, gate_y2):
|
||||
obstacles.add((x, en.y2))
|
||||
|
||||
return obstacles
|
||||
|
||||
def main():
|
||||
initial_state = (0, 0, 'S')
|
||||
agent = Agent(initial_state, 'images/agent1.png', const.GRID_SIZE)
|
||||
|
||||
obstacles = generate_obstacles()
|
||||
actions = []
|
||||
agent = Agent(0, 0, 'images/avatar.png', GRID_SIZE)
|
||||
clock = pygame.time.Clock()
|
||||
spawned = False
|
||||
route = False
|
||||
|
||||
# # Lista zawierająca klatki do odwiedzenia
|
||||
# enclosures_to_visit = Enclosures.copy()
|
||||
# current_enclosure_index = -1 # Indeks bieżącej klatki
|
||||
# actions_to_compare_list = [] # Lista zawierająca ścieżki do porównania
|
||||
# goals_to_compare_list = list() # Lista zawierająca cele do porównania
|
||||
|
||||
while True:
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
pygame.quit()
|
||||
sys.exit()
|
||||
agent.handle_event(event, const.GRID_WIDTH, const.GRID_HEIGHT, Animals, obstacles,const)
|
||||
agent.handle_event(event, GRID_HEIGHT, GRID_WIDTH, Animals, fences)
|
||||
|
||||
change_time(const)
|
||||
draw_background(const)
|
||||
draw_enclosures(Enclosures, const)
|
||||
draw_gates(Enclosures, const)
|
||||
draw_house(const)
|
||||
|
||||
|
||||
screen.blit(background_image,(0,0))
|
||||
draw_grid()
|
||||
draw_enclosures()
|
||||
draw_gates()
|
||||
if not spawned:
|
||||
spawn_all_animals()
|
||||
spawn_obstacles()
|
||||
cost_map = generate_cost_map(Animals, Terrain_Obstacles)
|
||||
for animal in Animals:
|
||||
# animal._feed = 0
|
||||
animal._feed = random.randint(0, 10)
|
||||
spawned = True
|
||||
|
||||
if not route:
|
||||
animals = [(animal.x, animal.y) for animal in Animals]
|
||||
best_route = genetic_algorithm(animals)
|
||||
route = True
|
||||
|
||||
draw_Animals(Animals, const)
|
||||
draw_Terrain_Obstacles(Terrain_Obstacles, const)
|
||||
agent.draw(const)
|
||||
draw_Animals()
|
||||
opengates()
|
||||
agent.draw(screen)
|
||||
pygame.display.flip()
|
||||
clock.tick(10)
|
||||
|
||||
if actions:
|
||||
action = actions.pop(0)
|
||||
agent.move(action, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, Animals, goal,const)
|
||||
pygame.time.wait(200)
|
||||
else:
|
||||
if agent._dryfood > 1 and agent._wetfood > 1 :
|
||||
# if not goals_to_compare_list:
|
||||
# current_enclosure_index = (current_enclosure_index + 1) % len(enclosures_to_visit)
|
||||
# current_enclosure = enclosures_to_visit[current_enclosure_index]
|
||||
|
||||
# for animal in current_enclosure.animals:
|
||||
# goal = (animal.x, animal.y)
|
||||
# goals_to_compare_list.append(goal)
|
||||
|
||||
# actions_to_compare = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
# actions_to_compare_list.append((actions_to_compare, goal))
|
||||
|
||||
# chosen_path_and_goal = min(actions_to_compare_list, key=lambda x: len(x[0]))
|
||||
# goal = chosen_path_and_goal[1]
|
||||
# draw_goal(const, goal)
|
||||
|
||||
# # Usuń wybrany element z listy
|
||||
# actions_to_compare_list.remove(chosen_path_and_goal)
|
||||
# goals_to_compare_list.remove(goal)
|
||||
goal = best_route.pop(0)
|
||||
best_route.append(goal)
|
||||
draw_goal(const, goal)
|
||||
|
||||
actions, cost = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
|
||||
else:
|
||||
goal = (3,1)
|
||||
draw_goal(const, goal)
|
||||
actions, cost = graphsearch(agent.istate, goal, const.GRID_WIDTH, const.GRID_HEIGHT, obstacles, cost_map)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 107 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 77 KiB |
Before Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 126 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 30 KiB |
129
model/model.py
@ -1,129 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision.datasets
|
||||
from torchvision import datasets, transforms, models
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
def set_device():
|
||||
if torch.cuda.is_available():
|
||||
device = 'cuda'
|
||||
else:
|
||||
device = 'cpu'
|
||||
return torch.device(device)
|
||||
|
||||
|
||||
train_dataset_path = './data/train'
|
||||
test_dataset_path = './data/val'
|
||||
number_of_classes = 7
|
||||
|
||||
SIZE = 224
|
||||
mean = [0.5164, 0.5147, 0.4746]
|
||||
std = [0.2180, 0.2126, 0.2172]
|
||||
|
||||
train_transforms = transforms.Compose([
|
||||
transforms.Resize((SIZE, SIZE)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.RandomRotation(10),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
|
||||
])
|
||||
|
||||
test_transforms = transforms.Compose([
|
||||
transforms.Resize((SIZE, SIZE)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
|
||||
])
|
||||
|
||||
train_dataset = torchvision.datasets.ImageFolder(root=train_dataset_path, transform=train_transforms)
|
||||
test_dataset = torchvision.datasets.ImageFolder(root=test_dataset_path, transform=test_transforms)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||
|
||||
resnet18_model = models.resnet18(weights=None)
|
||||
num_ftrs = resnet18_model.fc.in_features
|
||||
resnet18_model.fc = nn.Linear(num_ftrs, number_of_classes)
|
||||
device = set_device()
|
||||
resnet18_model = resnet18_model.to(device)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
optimizer = optim.SGD(resnet18_model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.003)
|
||||
|
||||
|
||||
def save_checkpoint(model, epoch, optimizer, best_acc):
|
||||
state = {
|
||||
'epoch': epoch + 1,
|
||||
'model': model.state_dict(),
|
||||
'best accuracy': best_acc,
|
||||
'optimizer': optimizer.state_dict()
|
||||
}
|
||||
torch.save(state, 'model_best_checkpoint.pth.tar')
|
||||
def train_nn(model, train_loader, test_loader, criterion, optimizer, n_epochs):
|
||||
device = set_device()
|
||||
best_acc = 0
|
||||
|
||||
for epoch in range(n_epochs):
|
||||
print("Epoch number %d " % (epoch + 1))
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
running_correct = 0.0
|
||||
total = 0
|
||||
|
||||
for data in train_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
total += labels.size(0)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
running_correct += (labels == predicted).sum().item()
|
||||
|
||||
epoch_loss = running_loss/len(train_loader)
|
||||
epoch_acc = 100 * running_correct / total
|
||||
print(f"Training dataset. Got {running_correct} out of {total} images correctly ({epoch_acc}). Epoch loss: {epoch_loss}")
|
||||
|
||||
test_data_acc = evaluate_model_on_test_set(model, test_loader)
|
||||
|
||||
if test_data_acc > best_acc:
|
||||
best_acc = test_data_acc
|
||||
save_checkpoint(model, epoch, optimizer, best_acc)
|
||||
|
||||
print("Finished")
|
||||
return model
|
||||
def evaluate_model_on_test_set(model, test_loader):
|
||||
model.eval()
|
||||
predicted_correctly_on_epoch = 0
|
||||
total = 0
|
||||
device = set_device()
|
||||
|
||||
with torch.no_grad():
|
||||
for data in test_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
total += labels.size(0)
|
||||
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
|
||||
predicted_correctly_on_epoch += (predicted == labels).sum().item()
|
||||
|
||||
epoch_acc = 100 * predicted_correctly_on_epoch / total
|
||||
print(f"Testing dataset. Got {predicted_correctly_on_epoch} out of {total} images correctly ({epoch_acc})")
|
||||
return epoch_acc
|
||||
|
||||
|
||||
train_nn(resnet18_model, train_loader, test_loader, loss_fn, optimizer, n_epochs=30)
|
||||
|
||||
checkpoint = torch.load('model_best_checkpoint.pth.tar')
|
||||
resnet18_model.load_state_dict(checkpoint['model'])
|
||||
torch.save(resnet18_model, 'best_model.pth')
|
19
night.py
@ -1,19 +0,0 @@
|
||||
import time
|
||||
import pygame
|
||||
|
||||
DAY_LENGTH = 90 # Długość dnia w sekundach
|
||||
|
||||
def draw_night(const):
|
||||
overlay = pygame.Surface(const.WINDOW_SIZE)
|
||||
overlay.fill((0, 0, 0))
|
||||
overlay.set_alpha(128) # Ustawienie przezroczystości (0 - całkowicie przeźroczyste, 255 - nieprzeźroczyste)
|
||||
const.screen.blit(overlay, (0, 0))
|
||||
|
||||
def change_time(const):
|
||||
current_time = time.time()
|
||||
|
||||
# Sprawdzamy, czy nadszedł czas zmiany pory dnia
|
||||
if current_time >= const.TIME_CHANGE:
|
||||
# Zmieniamy porę dnia
|
||||
const.IS_NIGHT = not const.IS_NIGHT # Jeśli było dzień, teraz będzie noc, i odwrotnie
|
||||
const.TIME_CHANGE = current_time + DAY_LENGTH
|
32
parrot.py
Normal file
@ -0,0 +1,32 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Parrot(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Parrot_image = pygame.image.load('images/parrot.png')
|
||||
name = 'parrot'
|
||||
environment = "medium"
|
||||
food_image = 'images/grains.png'
|
||||
parrot_food = 'grains'
|
||||
super().__init__(x, y,name, Parrot_image, food_image,parrot_food, environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
|
||||
|
||||
def feed(self):
|
||||
self.getting_hungry()
|
||||
if self._feed < 1.5:
|
||||
return 'False'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
|
||||
def getting_hungry(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / 60
|
||||
self._feed += minutes_passed
|
||||
self._starttime = checktime
|
32
penguin.py
Normal file
@ -0,0 +1,32 @@
|
||||
from animal import Animal
|
||||
import pygame
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
|
||||
class Penguin(Animal):
|
||||
def __init__(self, x, y, adult=False):
|
||||
Penguin_image = pygame.image.load('images/penguin.png')
|
||||
name = 'penguin'
|
||||
environment = "cold"
|
||||
food_image = 'images/fish.png'
|
||||
penguin_food = 'fish'
|
||||
super().__init__(x, y,name, Penguin_image, food_image,penguin_food,environment, adult)
|
||||
self._starttime = datetime.now()
|
||||
|
||||
|
||||
|
||||
def feed(self):
|
||||
self.getting_hungry()
|
||||
if self._feed < 2:
|
||||
return 'False'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
|
||||
def getting_hungry(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
minutes_passed = delta.total_seconds() / 60
|
||||
self._feed += minutes_passed
|
||||
self._starttime = checktime
|
11
season.py
@ -1,11 +0,0 @@
|
||||
import pygame
|
||||
|
||||
def draw_background(const):
|
||||
season_images = {
|
||||
"spring": "images/tłowiosna.jpg",
|
||||
"summer": "images/tło.jpg",
|
||||
"autumn": "images/tłojesień.jpg",
|
||||
"winter": "images/tłozima.jpg"
|
||||
}
|
||||
background_image = pygame.transform.scale(pygame.image.load(season_images[const.season]), const.WINDOW_SIZE)
|
||||
const.screen.blit(background_image, (0, 0))
|
75
spawner.py
@ -1,55 +1,44 @@
|
||||
import random
|
||||
|
||||
|
||||
class Spawner:
|
||||
def __init__(self, entity):
|
||||
self.entity = entity
|
||||
|
||||
def spawn_animal(self, blocked, taken, enclosures):
|
||||
self.enclosures = [enclosure for enclosure in enclosures if enclosure.type == self.entity.environment]
|
||||
# Wyrażenie listowe filtrujące tylko te wybiegi, które pasują do środowiska zwierzęcia
|
||||
enclosure = random.choice(self.enclosures)
|
||||
|
||||
enclosure.animals.add(self.entity) # Przydzielenie zwierzęcia do wybiegu
|
||||
def __init__(self, animal, enclosures):
|
||||
self.animal = animal
|
||||
self.enclosures = enclosures
|
||||
|
||||
def spawn_animal(self, blocked, taken):
|
||||
possibilities = self.enclosures
|
||||
fitting = []
|
||||
for option in possibilities:
|
||||
if option.type == self.animal.environment:
|
||||
fitting.append(option)
|
||||
enclosure = random.choice(fitting)
|
||||
while True:
|
||||
if self.entity.adult:
|
||||
self.entity.x = random.randint(enclosure.x1+1, enclosure.x2-2)
|
||||
self.entity.y = random.randint(enclosure.y1+1, enclosure.y2-2)
|
||||
else:
|
||||
self.entity.x = random.randint(enclosure.x1+1, enclosure.x2)
|
||||
self.entity.y = random.randint(enclosure.y1+1, enclosure.y2)
|
||||
|
||||
if self.check(blocked | {(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}, taken):
|
||||
break
|
||||
|
||||
def spawn_terrain_obstacles(self, blocked1, blocked2, taken, grid_width, grid_height):
|
||||
blocked1 = blocked1 | {(2,0),(3,0),(2,1),(3,1),(8,5),(3,10),(15,2),(26,2),(11,4),(15,7),(22,4),(24,10),(11,12),(19,12)}
|
||||
while True:
|
||||
self.entity.x = random.randint(0, grid_width - 1)
|
||||
self.entity.y = random.randint(0, grid_height - 1)
|
||||
y = self.entity.y
|
||||
x = self.entity.x
|
||||
if (x, y) not in blocked1 and (x, y) not in blocked2 and (x, y) not in taken:
|
||||
taken.add((self.entity.x, self.entity.y))
|
||||
if enclosure.x1 < enclosure.x2:
|
||||
self.animal.x = random.randint(enclosure.x1, enclosure.x2)
|
||||
if enclosure.y1 < enclosure.y2:
|
||||
self.animal.y = random.randint(enclosure.y1, enclosure.y2)
|
||||
if enclosure.y1 > enclosure.y2:
|
||||
self.animal.y = random.randint(enclosure.y2, enclosure.y1)
|
||||
if enclosure.x1 > enclosure.x2:
|
||||
self.animal.x = random.randint(enclosure.x2, enclosure.x1)
|
||||
if enclosure.y1 < enclosure.y2:
|
||||
self.animal.y = random.randint(enclosure.y1, enclosure.y2)
|
||||
if enclosure.y1 > enclosure.y2:
|
||||
self.animal.y = random.randint(enclosure.y2, enclosure.y1)
|
||||
if self.check(blocked, taken):
|
||||
break
|
||||
|
||||
def check(self, blocked, taken):
|
||||
x = self.entity.x
|
||||
y = self.entity.y
|
||||
|
||||
x = self.animal.x
|
||||
y = self.animal.y
|
||||
if (x,y) in blocked or (x,y) in taken:
|
||||
return False
|
||||
|
||||
if self.entity.adult:
|
||||
|
||||
adult_fields = [(x, y), (x+1,y), (x,y+1), (x+1,y+1)] # Duże zwierze zajmuje 4 pola
|
||||
|
||||
if any(field in taken for field in adult_fields): # Jeśli stawiane zwierze jest dorosłe i jakiekolwiek pole jest zajęte, to nie można postawić zwierzęcia
|
||||
return False
|
||||
|
||||
for field in adult_fields: # Dodaj wszystkie pola zajęte przez duże zwierzę
|
||||
taken.add(field)
|
||||
else:
|
||||
taken.add((x,y))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,128 +0,0 @@
|
||||
from queue import PriorityQueue
|
||||
|
||||
DEFAULT_COST_VALUE = 1
|
||||
|
||||
def is_border(x, y, max_x, max_y):
|
||||
return 0 <= x < max_x and 0 <= y < max_y
|
||||
|
||||
def is_obstacle(x, y, obstacles):
|
||||
return (x, y) in obstacles
|
||||
|
||||
def succ(current_state, max_x, max_y, obstacles):
|
||||
successors = []
|
||||
x, y, direction = current_state
|
||||
|
||||
# Akcja: Do przodu
|
||||
direction_x, direction_y = {'N': (0, -1), 'E': (1, 0), 'S': (0, 1), 'W': (-1, 0)}[direction] # Słownik przesunięć w zależności od kierunku
|
||||
new_x, new_y = x + direction_x, y + direction_y
|
||||
|
||||
if is_border(new_x, new_y, max_x, max_y) and not(is_obstacle(new_x, new_y, obstacles)):
|
||||
successors.append(((new_x, new_y, direction), 'Go Forward'))
|
||||
|
||||
# Akcja: Obrót w lewo
|
||||
left_turns = {'N': 'W', 'W': 'S', 'S': 'E', 'E': 'N'} # Słownik kierunków po obrocie w lewo
|
||||
successors.append(((x, y, left_turns[direction]), 'Turn Left'))
|
||||
|
||||
# Akcja: Obrót w prawo
|
||||
right_turns = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'} # Słownik kierunków po obrocie w prawo
|
||||
successors.append(((x, y, right_turns[direction]), 'Turn Right'))
|
||||
|
||||
return successors
|
||||
|
||||
def graphsearch(istate, goal, max_x, max_y, obstacles, cost_map):
|
||||
fringe = PriorityQueue()
|
||||
explored = set()
|
||||
|
||||
fringe.put((0, (istate, None , None)))
|
||||
|
||||
while not fringe.empty():
|
||||
_, node = fringe.get()
|
||||
state, _, _ = node
|
||||
|
||||
if goaltest(state, goal):
|
||||
return build_action_sequence(node), current_cost(node, cost_map)
|
||||
|
||||
explored.add(state)
|
||||
|
||||
successors = succ(state, max_x, max_y, obstacles)
|
||||
|
||||
for new_state, action in successors:
|
||||
new_node = (new_state, node, action)
|
||||
|
||||
p_new_state = current_cost(node, cost_map) + heuristic(state, goal)
|
||||
|
||||
if not is_state_in_queue(new_state, fringe) and new_state not in explored:
|
||||
fringe.put((p_new_state, new_node))
|
||||
|
||||
elif is_state_in_queue(new_state, fringe):
|
||||
for i, (p_existing_state, (existing_state, _, _)) in enumerate(fringe.queue):
|
||||
if existing_state == new_state and p_existing_state > p_new_state:
|
||||
fringe.queue[i] = (p_new_state, new_node)
|
||||
else:
|
||||
break
|
||||
|
||||
return False, float('inf')
|
||||
|
||||
def is_state_in_queue(state, queue):
|
||||
for _, (s, _, _) in queue.queue:
|
||||
if s == state:
|
||||
return True
|
||||
return False
|
||||
|
||||
def build_action_sequence(node):
|
||||
actions = []
|
||||
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
|
||||
_, parent, action = node
|
||||
actions.append(action)
|
||||
node = parent
|
||||
actions.reverse()
|
||||
return actions
|
||||
|
||||
def goaltest(state, goal):
|
||||
x, y, _ = state
|
||||
goal_x, goal_y = goal
|
||||
return (x,y) == (goal_x, goal_y)
|
||||
|
||||
def current_cost(node, cost_map):
|
||||
cost = 0
|
||||
while node[1] is not None: # Dopóki nie dojdziemy do korzenia
|
||||
_, parent, action = node
|
||||
# Dodaj koszt pola z mapy kosztów tylko jeśli akcja to "Forward"
|
||||
if action == 'Go Forward':
|
||||
state, _, _ = node
|
||||
cost += cost_map.get(state[:2], DEFAULT_COST_VALUE) # Pobiera koszt przejścia przez dane pole, a jeśli koszt nie jest zdefiniowany to bierze wartość domyślną
|
||||
|
||||
if action == 'Turn Right' or action == 'Turn Left':
|
||||
cost += DEFAULT_COST_VALUE
|
||||
|
||||
node = parent # Przejdź do rodzica
|
||||
return cost
|
||||
|
||||
def heuristic(state, goal):
|
||||
x, y, _ = state
|
||||
goal_x, goal_y = goal
|
||||
return abs(x - goal_x) + abs(y - goal_y) # Odległość Manhattana do celu
|
||||
|
||||
def generate_cost_map(Animals, Terrain_Obstacles, cost_map={}):
|
||||
adult_animal_cost = 15 # Default : 15
|
||||
baby_animal_cost = 10 # Default : 10
|
||||
puddle_cost = 50 # Default : 50
|
||||
bush_cost = 20 # Default : 20
|
||||
|
||||
for animal in Animals:
|
||||
if animal.adult:
|
||||
# cost_map[(animal.x + 1, animal.y + 1)] = adult_animal_cost
|
||||
# cost_map[(animal.x + 1, animal.y)] = adult_animal_cost
|
||||
# cost_map[(animal.x, animal.y + 1)] = adult_animal_cost
|
||||
cost_map[(animal.x, animal.y)] = adult_animal_cost
|
||||
else:
|
||||
cost_map[(animal.x, animal.y)] = baby_animal_cost
|
||||
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
if terrain_obstacle.type == 'puddle':
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = puddle_cost
|
||||
else:
|
||||
cost_map[(terrain_obstacle.x , terrain_obstacle.y )] = bush_cost
|
||||
|
||||
return cost_map
|
||||
|
@ -1,37 +0,0 @@
|
||||
import pygame
|
||||
|
||||
class Terrain_Obstacle:
|
||||
def __init__(self, x, y, type , image):
|
||||
self.x = x - 1
|
||||
self.y = y - 1
|
||||
self.type = type
|
||||
self.image = image
|
||||
|
||||
def draw(self, screen, grid_size):
|
||||
scaled_image = pygame.transform.scale(self.image, (grid_size, grid_size))
|
||||
screen.blit(scaled_image, (self.x * grid_size, self.y * grid_size))
|
||||
|
||||
def create_obstacles():
|
||||
puddle_image = pygame.image.load('images/puddle.png')
|
||||
bush_image = pygame.image.load('images/bush.png')
|
||||
|
||||
puddle1 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle2 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle3 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle4 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle5 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle6 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
puddle7 = Terrain_Obstacle(0,0,'puddle', puddle_image)
|
||||
bush1 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush2 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush3 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush4 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
bush5 = Terrain_Obstacle(0,0,'bush', bush_image)
|
||||
|
||||
Terrain_Obstacles = [puddle1, puddle2, puddle3, puddle4, puddle5, puddle6, puddle7, bush1, bush2, bush3, bush4, bush5]
|
||||
|
||||
return Terrain_Obstacles
|
||||
|
||||
def draw_Terrain_Obstacles(Terrain_Obstacles, const):
|
||||
for terrain_obstacle in Terrain_Obstacles:
|
||||
terrain_obstacle.draw(const.screen, const.GRID_SIZE)
|